Control of fractional chaotic and hyperchaotic systems based on a fractional order controller

被引:20
|
作者
Li Tian-Zeng [1 ,2 ]
Wang Yu [1 ,2 ]
Luo Mao-Kang [1 ]
机构
[1] Sichuan Univ, Coll Math, Chengdu 610065, Peoples R China
[2] Sichuan Univ Sci & Engn, Sichuan Prov Univ Key Lab Bridge Nondestruct Dete, Sch Sci, Zigong 643000, Peoples R China
基金
中国国家自然科学基金;
关键词
fractional-order chaotic system; chaos control; fractional-order controller; hyperchaos; MULTIAGENT SYSTEMS; FEEDBACK-CONTROL; CHEN SYSTEM; SYNCHRONIZATION; CONSENSUS;
D O I
10.1088/1674-1056/23/8/080501
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We present a new fractional-order controller based on the Lyapunov stability theory and propose a control method which can control fractional chaotic and hyperchaotic systems whether systems are commensurate or incommensurate. The proposed control method is universal, simple, and theoretically rigorous. Numerical simulations are given for several fractional chaotic and hyperchaotic systems to verify the effectiveness and the universality of the proposed control method.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] Fractional sliding mode surface controller for projective synchronization of fractional hyperchaotic systems
    Sun Ning
    Zhang Hua-Guang
    Wang Zhi-Liang
    ACTA PHYSICA SINICA, 2011, 60 (05)
  • [32] Synchronization of fractional order hyperchaotic systems based on output feedback sliding mode control
    Deng, Li-Wei
    Song, Shen-Min
    Zidonghua Xuebao/Acta Automatica Sinica, 2014, 40 (11): : 2420 - 2427
  • [33] Synchronization of uncertain fractional-order chaotic systems via the fractional-order sliding mode controller
    Yan, Xiaomei
    Shang, Ting
    Zhao, Xiaoguo
    Ji, Ruirui
    PROCEEDINGS OF THE 28TH CHINESE CONTROL AND DECISION CONFERENCE (2016 CCDC), 2016, : 1444 - 1449
  • [34] Hyperchaotic Fractional-Order Systems and Their Applications
    Elsaid, Ahmed
    Torres, Delfim F. M.
    Bhalekar, Sachin
    Elsadany, Abdelalim
    Elsonbaty, Amr
    COMPLEXITY, 2017,
  • [35] Modified function projective lag synchronization in fractional-order chaotic (hyperchaotic) systems
    Luo Chao
    Wang Xingyuan
    JOURNAL OF VIBRATION AND CONTROL, 2014, 20 (10) : 1498 - 1511
  • [36] A new fractional sliding mode controller based on nonlinear fractional-order proportional integral derivative controller structure to synchronize fractional-order chaotic systems with uncertainty and disturbances
    Mirrezapour, Seyede Zeynab
    Zare, Assef
    Hallaji, Majid
    JOURNAL OF VIBRATION AND CONTROL, 2022, 28 (7-8) : 773 - 785
  • [37] Synchronization of Fractional-Order Hyperchaotic Systems via Fractional-Order Controllers
    Li, Tianzeng
    Wang, Yu
    Yang, Yong
    DISCRETE DYNAMICS IN NATURE AND SOCIETY, 2014, 2014
  • [38] Synchronization between fractional-order chaotic systems and integer orders chaotic systems (fractional-order chaotic systems)
    Zhou Ping
    Cheng Yuan-Ming
    Kuang Fei
    CHINESE PHYSICS B, 2010, 19 (09)
  • [39] Synchronization between fractional-order chaotic systems and integer orders chaotic systems (fractional-order chaotic systems)
    周平
    程元明
    邝菲
    Chinese Physics B, 2010, (09) : 237 - 242
  • [40] Fractional Adaptive Sliding Mode Control Laws for Fractional Order Chaotic Systems Synchronization
    Rabah, Karima
    Ladaci, Samir
    2016 17TH INTERNATIONAL CONFERENCE ON SCIENCES AND TECHNIQUES OF AUTOMATIC CONTROL AND COMPUTER ENGINEERING (STA'2016), 2016, : 293 - +