A Transformer-Based Bridge Structural Response Prediction Framework

被引:2
|
作者
Li, Ziqi [1 ]
Li, Dongsheng [1 ]
Sun, Tianshu [1 ]
机构
[1] Dalian Univ Technol, Sch Civil Engn, Dalian 116024, Peoples R China
基金
中国国家自然科学基金;
关键词
bridge structural response prediction; transformer; deep learning; structural health monitoring; encoder-decoder; SYSTEM;
D O I
10.3390/s22083100
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Structural response prediction with desirable accuracy is considerably essential for the health monitoring of bridges. However, it appears to be difficult in accurately extracting structural response features on account of complex on-site environment and noise disturbance, resulting in poor prediction accuracy of the response values. To address this issue, a Transformer-based bridge structural response prediction framework was proposed in this paper. The framework contains multi-layer encoder modules and attention modules that can precisely capture the history-dependent features in time-series data. The effectiveness of the proposed method was validated with the use of six-month strain response data of a concrete bridge, and the results are also compared with those of the most commonly used Long Short-Term Memory (LSTM)-based structural response prediction framework. The analysis indicated that the proposed method was effective in predicting structural response, with the prediction error less than 50% of the LSTM-based framework. The proposed method can be applied in damage diagnosis and disaster warning of bridges.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] TransGOP: Transformer-Based Gaze Object Prediction
    Wang, Binglu
    Guo, Chenxi
    Jin, Yang
    Xia, Haisheng
    Liu, Nian
    THIRTY-EIGHTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 38 NO 9, 2024, : 10180 - 10188
  • [22] Temporal fusion transformer-based prediction in aquaponics
    Ahmet Metin
    Ahmet Kasif
    Cagatay Catal
    The Journal of Supercomputing, 2023, 79 : 19934 - 19958
  • [23] TEMPO: A transformer-based mutation prediction framework for SARS-CoV-2 evolution
    Zhou, Binbin
    Zhou, Hang
    Zhang, Xue
    Xu, Xiaobin
    Chai, Yi
    Zheng, Zengwei
    Kot, Alex Chichung
    Zhou, Zhan
    COMPUTERS IN BIOLOGY AND MEDICINE, 2023, 152
  • [24] Transformer and Graph Transformer-Based Prediction of Drug-Target Interactions
    Qian, Meiling
    Lu, Weizhong
    Zhang, Yu
    Liu, Junkai
    Wu, Hongjie
    Lu, Yaoyao
    Li, Haiou
    Fu, Qiming
    Shen, Jiyun
    Xiao, Yongbiao
    CURRENT BIOINFORMATICS, 2024, 19 (05) : 470 - 481
  • [25] A Transformer-Based Framework for Payload Malware Detection and Classification
    Stein, Kyle
    Mahyari, Arash
    Francia, Guillermo, III
    El-Sheikh, Eman
    2024 IEEE 5TH ANNUAL WORLD AI IOT CONGRESS, AIIOT 2024, 2024, : 0105 - 0111
  • [26] Enhancing tourism demand forecasting with a transformer-based framework
    Li, Xin
    Xu, Yechi
    Law, Rob
    Wang, Shouyang
    ANNALS OF TOURISM RESEARCH, 2024, 107
  • [27] A Transformer-Based Framework for Biomedical Information Retrieval Systems
    Hall, Karl
    Jayne, Chrisina
    Chang, Victor
    ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING, ICANN 2023, PT VI, 2023, 14259 : 317 - 331
  • [28] Transformer-based novel framework for remaining useful life prediction of lubricant in operational rolling bearings
    Kim, Sunghyun
    Seo, Yun-Ho
    Park, Junhong
    RELIABILITY ENGINEERING & SYSTEM SAFETY, 2024, 251
  • [29] TBMF Framework: A Transformer-Based Multilevel Filtering Framework for PD Detection
    Xu, Ning
    Wang, Wensong
    Fulnecek, Jan
    Kabot, Ondrej
    Misak, Stanislav
    Wang, Lipo
    Zheng, Yuanjin
    Gooi, Hoay Beng
    IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2024, 71 (04) : 4098 - 4107
  • [30] Rethinking Transformer-based Set Prediction for Object Detection
    Sun, Zhiqing
    Cao, Shengcao
    Yang, Yiming
    Kitani, Kris
    2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, : 3591 - 3600