Probabilistic Path Hamiltonian Monte Carlo

被引:0
|
作者
Vu Dinh [1 ]
Bilge, Arman [1 ,2 ]
Zhang, Cheng [1 ]
Matsen, Frederick A. [1 ]
机构
[1] Fred Hutchison Canc Res Ctr, Program Computat Biol, Seattle, WA 98109 USA
[2] Univ Washington, Dept Stat, Seattle, WA 98195 USA
基金
美国国家科学基金会;
关键词
INFERENCE;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Hamiltonian Monte Carlo (HMC) is an efficient and effective means of sampling posterior distributions on Euclidean space, which has been extended to manifolds with boundary. However, some applications require an extension to more general spaces. For example, phylogenetic (evolutionary) trees are defined in terms of both a discrete graph and associated continuous parameters; although one can represent these aspects using a single connected space, this rather complex space is not suitable for existing HMC algorithms. In this paper, we develop Probabilistic Path HMC (PPHMC) as a first step to sampling distributions on spaces with intricate combinatorial structure. We define PPHMC on orthant complexes, show that the resulting Markov chain is ergodic, and provide a promising implementation for the case of phylogenetic trees in opensource software. We also show that a surrogate function to ease the transition across a boundary on which the log-posterior has discontinuous derivatives can greatly improve efficiency.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] A Hamiltonian Monte Carlo Method for Probabilistic Adversarial Attack and Learning
    Wang, Hongjun
    Li, Guanbin
    Liu, Xiaobai
    Lin, Liang
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2022, 44 (04) : 1725 - 1737
  • [2] Monte Carlo Hamiltonian
    Jirari, H
    Kröger, H
    Luo, XQ
    Moriarty, KJM
    PHYSICS LETTERS A, 1999, 258 (01) : 6 - 14
  • [3] Monte Carlo Hamiltonian
    Jirari, H
    Kröger, H
    Huang, CQ
    Jiang, JQ
    Luo, XQ
    Moriarty, KJM
    NUCLEAR PHYSICS B-PROCEEDINGS SUPPLEMENTS, 2000, 83-4 : 953 - 955
  • [4] Monte Carlo Hamiltonian
    Jirari, H.
    Kröger, H.
    Luo, X.Q.
    Moriarty, K.J.M.
    Physics Letters, Section A: General, Atomic and Solid State Physics, 1999, 258 (01): : 6 - 14
  • [5] Hamiltonian Monte Carlo based Path Integral for Stochastic Optimal Control
    Akshay, P.
    Vrushabh, D.
    Sonam, K.
    Wagh, S.
    Singh, N.
    2020 28TH MEDITERRANEAN CONFERENCE ON CONTROL AND AUTOMATION (MED), 2020, : 254 - 259
  • [6] PAIRING HAMILTONIAN BY A PATH-INTEGRAL MONTE-CARLO PROCEDURE
    CERF, N
    MARTIN, O
    PHYSICAL REVIEW C, 1993, 47 (06): : 2610 - 2615
  • [7] Split Hamiltonian Monte Carlo
    Babak Shahbaba
    Shiwei Lan
    Wesley O. Johnson
    Radford M. Neal
    Statistics and Computing, 2014, 24 : 339 - 349
  • [8] Magnetic Hamiltonian Monte Carlo
    Tripuraneni, Nilesh
    Rowland, Mark
    Ghahramani, Zoubin
    Turner, Richard
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 70, 2017, 70
  • [9] Nonparametric Hamiltonian Monte Carlo
    Mak, Carol
    Zaiser, Fabian
    Ong, Luke
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 139, 2021, 139
  • [10] Split Hamiltonian Monte Carlo
    Shahbaba, Babak
    Lan, Shiwei
    Johnson, Wesley O.
    Neal, Radford M.
    STATISTICS AND COMPUTING, 2014, 24 (03) : 339 - 349