On symmetric and asymmetric Van der Pol-Duffing oscillators

被引:13
|
作者
Wiggers, Vinicius [1 ]
Rech, Paulo C. [1 ]
机构
[1] Univ Estado Santa Catarina, Dept Fis, BR-89219710 Joinville, Brazil
来源
EUROPEAN PHYSICAL JOURNAL B | 2018年 / 91卷 / 07期
关键词
PARAMETER-SPACE; ORGANIZATION; PERIODICITY;
D O I
10.1140/epjb/e2018-90295-1
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
We investigate numerically the dynamics of both symmetric and asymmetric Van der Pol-Duffing oscillators driven by a periodic force F (t) = f cos omega t. Each system is modeled by a different second order nonautonomous nonlinear ordinary differential equation controlled by five parameters. Our investigation takes into account the (omega, f) parameter-space in the two systems, keeping the other three parameters fixed. We verify the existence of parameter regions for which the corresponding trajectories in the phase-space are periodic, quasiperiodic, and chaotic, for the symmetric case. In the asymmetric case we verify the existence only of periodic and chaotic regions in the (omega, f) parameter-space. Finally, we also investigate the organization of the dynamics in the two systems, identifying Fibonacci and period-adding sequences of periodic structures.
引用
收藏
页数:6
相关论文
共 50 条
  • [31] PERIODIC MOTIONS IN A COUPLED VAN DER POL-DUFFING OSCILLATOR
    Xu, Yeyin
    Luo, Albert C. J.
    PROCEEDINGS OF THE ASME INTERNATIONAL DESIGN ENGINEERING TECHNICAL CONFERENCES AND COMPUTERS AND INFORMATION IN ENGINEERING CONFERENCE, 2017, VOL 6, 2017,
  • [32] Stability and dynamics of a controlled van der Pol-Duffing oscillator
    Ji, JC
    Hansen, CH
    CHAOS SOLITONS & FRACTALS, 2006, 28 (02) : 555 - 570
  • [33] On bifurcations of periodic orbits in the van der Pol-Duffing equation
    Belyakova, GV
    Belyakov, LA
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1997, 7 (02): : 459 - 462
  • [34] Adaptive synchronization of two chaotic systems consisting of modified Van der Pol-Duffing and Chua oscillators
    Fotsin, H
    Bowong, S
    Daafouz, J
    CHAOS SOLITONS & FRACTALS, 2005, 26 (01) : 215 - 229
  • [35] Parameters identification of Van der Pol-Duffing oscillators via particle swarm optimization and differential evolution
    Quaranta, Giuseppe
    Monti, Giorgio
    Marano, Giuseppe Carlo
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2010, 24 (07) : 2076 - 2095
  • [36] Master–slave synchronization in the Van der Pol–Duffing and Duffing oscillators
    Ulises Uriostegui Legorreta
    Eduardo Salvador Tututi Hernández
    International Journal of Dynamics and Control, 2024, 12 : 356 - 372
  • [37] Nonresonant Hopf bifurcations of a controlled van der Pol-Duffing oscillator
    Ji, J. C.
    JOURNAL OF SOUND AND VIBRATION, 2006, 297 (1-2) : 183 - 199
  • [38] Non-existence, existence, and uniqueness of limit cycles for a generalization of the Van der Pol-Duffing and the Rayleigh-Duffing oscillators
    Candido, Murilo R.
    Llibre, Jaume
    Valls, Claudia
    PHYSICA D-NONLINEAR PHENOMENA, 2020, 407
  • [39] DYNAMICAL BEHAVIORS OF VAN DER POL-DUFFING SYSTEMS WITH INDEFINITE DEGREE
    Chen, Hebai
    Feng, Zhaosheng
    Li, Zhijie
    Wang, Zhaoxia
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2024, 44 (01) : 281 - 317
  • [40] A Simple Numerical Method For Van der Pol-Duffing Oscillator Equation
    Zhang, Chengli
    Zeng, Yun
    PROCEEDINGS OF THE 2014 INTERNATIONAL CONFERENCE ON MECHATRONICS, CONTROL AND ELECTRONIC ENGINEERING, 2014, 113 : 476 - 480