Biomonitoring of Metal Exposure During Additive Manufacturing (3D Printing)

被引:25
|
作者
Ljunggren, Stefan A. [1 ]
Karlsson, Helen [1 ]
Stahlbom, Bengt [1 ]
Krapi, Blerim [1 ]
Fornander, Louise [2 ]
Karlsson, Lovisa E. [3 ]
Bergstrom, Bernt [3 ]
Nordenberg, Eva [4 ]
Ervik, Torunn K. [5 ]
Graff, Pal [5 ]
机构
[1] Linkoping Univ, Occupat & Environm Med Ctr, Dept Clin & Expt Med, Linkoping, Sweden
[2] Orebro Univ, Fac Med & Hlth, Dept Occupat & Environm Med, Orebro, Sweden
[3] Orebro Univ Hosp, Dept Occupat & Environm Med, Orebro, Region Orebro C, Sweden
[4] Siemens Ind Turbomachinery, Finspang, Sweden
[5] Natl Inst Occupat Hlth, Oslo, Norway
关键词
3D-printing; Additive manufacturing; Metals; Occupational exposure; Particle exposure; RESPIRATORY SYMPTOMS; POPULATION; CANCER; COBALT;
D O I
10.1016/j.shaw.2019.07.006
中图分类号
R1 [预防医学、卫生学];
学科分类号
1004 ; 120402 ;
摘要
Background: Additive manufacturing (AM) is a rapidly expanding new technology involving challenges to occupational health. Here, metal exposure in an AM facility with large-scale metallic component production was investigated during two consecutive years with preventive actions in between. Methods: Gravimetric analyzes measured airborne particle concentrations, and filters were analyzed for metal content. In addition, concentrations of airborne particles <300 nm were investigated. Particles from recycled powder were characterized. Biomonitoring of urine and dermal contamination among AM operators, office personnel, and welders was performed. Results: Total and inhalable dust levels were almost all below occupational exposure limits, but inductively coupled plasma mass spectrometry showed that AM operators had a significant increase in cobalt exposure compared with welders. Airborne particle concentrations (<300 nm) showed transient peaks in the AM facility but were lower than those of the welding facility. Particle characterization of recycled powder showed fragmentation and condensates enriched in volatile metals. Biomonitoring showed a nonsignificant increase in the level of metals in urine in AM operators. Dermal cobalt and a trend for increasing urine metals during Workweek Year 1, but not in Year 2, indicated reduced exposure after preventive actions. Conclusion: Gravimetric analyses showed low total and inhalable dust exposure in AM operators. However, transient emission of smaller particles constitutes exposure risks. Preventive actions implemented by the company reduced the workers' metal exposure despite unchanged emissions of particles, indicating a need for careful design and regulation of the AM environments. It also emphasizes the need for relevant exposure markers and biomonitoring of health risks. (C) 2019 Occupational Safety and Health Research Institute, Published by Elsevier Korea LLC.
引用
收藏
页码:518 / 526
页数:9
相关论文
共 50 条
  • [21] Production planning in additive manufacturing and 3D printing
    Li, Qiang
    Kucukkoc, Ibrahim
    Zhang, David Z.
    Computers and Operations Research, 2017, 83 : 1339 - 1351
  • [22] 3D MICROSTRUCTURAL ARCHITECTURES FOR METAL AND ALLOY COMPONENTS FABRICATED BY 3D PRINTING/ADDITIVE MANUFACTURING TECHNOLOGIES
    Martinez, E.
    Murr, L. E.
    Amato, K. N.
    Hernandez, J.
    Shindo, P. W.
    Gaytan, S. M.
    Ramirez, D. A.
    Medina, F.
    Wicker, R. B.
    PROCEEDINGS OF THE 1ST INTERNATIONAL CONFERENCE ON 3D MATERIALS SCIENCE, 2012, : 73 - 78
  • [23] A Metallographic Review of 3D Printing/Additive Manufacturing of Metal and Alloy Products and Components
    Murr L.E.
    Metallography, Microstructure, and Analysis, 2018, 7 (2) : 103 - 132
  • [24] Printability of elastomer as a 3D printing material for additive manufacturing
    Dasgupta, Archisman
    Dutta, Prasenjit
    JOURNAL OF RUBBER RESEARCH, 2024, 27 (01) : 137 - 157
  • [25] Printability of elastomer latex for additive manufacturing or 3D printing
    Lukic, Maria
    Clarke, Jane
    Tuck, Christopher
    Whittow, William
    Wells, Garry
    JOURNAL OF APPLIED POLYMER SCIENCE, 2016, 133 (04)
  • [26] Current Biomedical Applications of 3D Printing and Additive Manufacturing
    Ahangar, Pouyan
    Cooke, Megan E.
    Weber, Michael H.
    Rosenzweig, Derek H.
    APPLIED SCIENCES-BASEL, 2019, 9 (08):
  • [27] Governing policies & strategy for 3d printing/additive manufacturing
    Khan, MohdZihabUllah
    Yoga, Mule Jaykumar
    2015 INTERNATIONAL CONFERENCE ON PERVASIVE COMPUTING (ICPC), 2015,
  • [28] 3D printing of glass by additive manufacturing techniques: a review
    Dao Zhang
    Xiaofeng Liu
    Jianrong Qiu
    Frontiers of Optoelectronics, 2021, 14 : 263 - 277
  • [29] Additive manufacturing 3d printing technology and HIP/CIP
    Nomura, Naoyuki
    Masuoka, Itaru
    Funtai Oyobi Fummatsu Yakin/Journal of the Japan Society of Powder and Powder Metallurgy, 2020, 67 (02):
  • [30] 3D printing of glass by additive manufacturing techniques: a review
    Zhang, Dao
    Liu, Xiaofeng
    Qiu, Jianrong
    FRONTIERS OF OPTOELECTRONICS, 2021, 14 (03) : 263 - 277