Testing inequality constraints in a linear regression model with spherically symmetric disturbances

被引:0
|
作者
Zhu Rong [1 ,2 ]
Zhou, Sherry Z. F. [1 ,2 ]
机构
[1] Chinese Acad Sci, Acad Math & Syst Sci, Beijing 100190, Peoples R China
[2] City Univ Hong Kong, Dept Management Sci, Kowloon, Hong Kong, Peoples R China
基金
中国国家自然科学基金;
关键词
Inequality constraint; spherically symmetric distribution; Wald test; SQUARED ERROR LOSS; SAMPLING PERFORMANCE; RESTRICTED ESTIMATOR; HYPOTHESIS; PRETEST; COEFFICIENTS; PARAMETER; VARIANCE; PRICES;
D O I
10.1007/s11424-014-1150-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper develops a Wald statistic for testing the validity of multivariate inequality constraints in linear regression models with spherically symmetric disturbances, and derive the distributions of the test statistic under null and nonnull hypotheses. The power of the test is then discussed. Numerical evaluations are also carried out to examine the power performances of the test for the case in which errors follow a multivariate student-t (Mt) distribution.
引用
收藏
页码:1204 / 1212
页数:9
相关论文
共 50 条
  • [21] On the Buchdahl Inequality for Spherically Symmetric Static Shells
    Håkan Andréasson
    Communications in Mathematical Physics, 2007, 274 : 399 - 408
  • [22] Bayesian analysis of testing general hypotheses in linear models with spherically symmetric errors
    Wang, Min
    Ye, Keying
    Han, Zifei
    TEST, 2024, 33 (01) : 251 - 270
  • [23] Bayesian analysis of testing general hypotheses in linear models with spherically symmetric errors
    Min Wang
    Keying Ye
    Zifei Han
    TEST, 2024, 33 : 251 - 270
  • [24] Bayesian inference for generalized linear model with linear inequality constraints
    Ghosal, Rahul
    Ghosh, Sujit K.
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2022, 166
  • [25] Effect of non-linear permeability in a spherically symmetric model of hydrocephalus
    Sobey, Ian
    Wirth, Benedikt
    MATHEMATICAL MEDICINE AND BIOLOGY-A JOURNAL OF THE IMA, 2006, 23 (04): : 339 - 361
  • [26] MULTIPLE REGRESSION WITH INEQUALITY CONSTRAINTS - PRETESTING BIAS, HYPOTHESIS TESTING AND EFFICIENCY
    LOVELL, MC
    PRESCOTT, E
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1970, 65 (330) : 913 - 925
  • [27] TESTING FOR AND AGAINST A SET OF LINEAR INEQUALITY CONSTRAINTS IN A MULTINOMIAL SETTING
    ELBARMI, H
    DYKSTRA, R
    CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 1995, 23 (02): : 131 - 143
  • [28] TESTING FOR AR(P) AGAINST IMA(1, Q) DISTURBANCES IN THE LINEAR-REGRESSION MODEL
    SILVAPULLE, P
    ECONOMICS LETTERS, 1992, 40 (03) : 257 - 261
  • [29] The Penrose Inequality in Higher Dimensional Spherically Symmetric Spacetimes
    Hidayat, Alam A.
    Gunara, Bobby E.
    Akbar, Fiki T.
    5TH INTERNATIONAL CONFERENCE ON MATHEMATICS AND NATURAL SCIENCES (ICMNS 2014), 2015, 1677
  • [30] Higher dimensional Penrose inequality in spherically symmetric spacetime
    Hidayat, Alam H.
    Akbar, Fiki T.
    Gunara, Bobby E.
    CHINESE JOURNAL OF PHYSICS, 2016, 54 (04) : 582 - 586