On the two-dimensional singular stochastic viscous nonlinear wave equations

被引:2
|
作者
Liu, Ruoyuan [1 ,2 ]
Oh, Tadahiro [1 ,2 ]
机构
[1] Univ Edinburgh, Sch Math, Edinburgh, Scotland
[2] Maxwell Inst forthe Math Sci, James Clerk Maxwell Bldg, Kings Bldg, Peter Guthri, Edinburgh EH9 3FD, Scotland
基金
欧洲研究理事会;
关键词
GLOBAL WELL-POSEDNESS;
D O I
10.5802/crmath.377
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the stochastic viscous nonlinear wave equations (SvNLW) on T-2, forced by a fractional derivative of the space-time white noise xi. In particular, we consider SvNLW with the singular additive forcing D-1/2 xi such that solutions are expected to be merely distributions. By introducing an appropriate forcing D renormalization, we prove local well-posedness of SvNLW. By establishing an energy bound via a Yudovich-type argument, we also prove pathwise global well-posedness of the defocusing cubic SvNLW. Lastly, in the defocusing case, we prove almost sure global well-posedness of SvNLW with respect to certain Gaussian random initial data.
引用
收藏
页码:1227 / 1248
页数:23
相关论文
共 50 条
  • [1] Global well-posedness of the two-dimensional stochastic viscous nonlinear wave equations
    Liu, Ruoyuan
    [J]. STOCHASTICS AND PARTIAL DIFFERENTIAL EQUATIONS-ANALYSIS AND COMPUTATIONS, 2024, 12 (02): : 898 - 931
  • [2] Global well-posedness of the two-dimensional stochastic viscous nonlinear wave equations
    Ruoyuan Liu
    [J]. Stochastics and Partial Differential Equations: Analysis and Computations, 2024, 12 : 898 - 931
  • [3] RENORMALIZATION OF THE TWO-DIMENSIONAL STOCHASTIC NONLINEAR WAVE EQUATIONS
    Gubinelli, Massimiliano
    Koch, Herbert
    Oh, Tadahiro
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2018, 370 (10) : 7335 - 7359
  • [4] Global Dynamics for the Two-dimensional Stochastic Nonlinear Wave Equations
    Gubinelli, Massimiliano
    Koch, Herbert
    Oh, Tadahiro
    Tolomeo, Leonardo
    [J]. INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2022, 2022 (21) : 16954 - 16999
  • [5] Nonlinear wave equations on the two-dimensional sphere
    Rammaha, MA
    Strei, TA
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2002, 267 (02) : 405 - 417
  • [6] Two nonnegative solutions for two-dimensional nonlinear wave equations
    Georgiev, Svetlin
    Majdoub, Mohamed
    [J]. CUBO-A MATHEMATICAL JOURNAL, 2022, 24 (03): : 393 - 412
  • [7] On two-dimensional nonlinear wave equations for the Murnaghan model
    Rushchitsky J.J.
    Sinchilo S.V.
    [J]. Rushchitsky, J.J. (rushch@inmech.kiev.ua), 2013, Springer Science and Business Media, LLC (49) : 512 - 520
  • [8] ON TWO-DIMENSIONAL NONLINEAR WAVE EQUATIONS FOR THE MURNAGHAN MODEL
    Rushchitsky, J. J.
    Sinchilo, S. V.
    [J]. INTERNATIONAL APPLIED MECHANICS, 2013, 49 (05) : 512 - 520
  • [9] A remark on triviality for the two-dimensional stochastic nonlinear wave equation
    Oh, Tadahiro
    Okamoto, Mamoru
    Robert, Tristan
    [J]. STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2020, 130 (09) : 5838 - 5864
  • [10] The Two-Dimensional Euler Equations on Singular Domains
    David Gérard-Varet
    Christophe Lacave
    [J]. Archive for Rational Mechanics and Analysis, 2013, 209 : 131 - 170