Non-local geometry inside Lifshitz horizon

被引:1
|
作者
Hu, Qi [1 ,3 ]
Lee, Sung-Sik [1 ,2 ]
机构
[1] Perimeter Inst Theoret Phys, 31 Caroline St N, Waterloo, ON N2L 2Y5, Canada
[2] McMaster Univ, Dept Phys & Astron, 1280 Main St W, Hamilton, ON L8S 4M1, Canada
[3] Univ Waterloo, Dept Phys & Astron, 200 Univ Ave W, Waterloo, ON N2L 3G1, Canada
来源
基金
加拿大自然科学与工程研究理事会;
关键词
AdS-CFT Correspondence; Gauge-gravity correspondence; Holography and condensed matter physics (AdS/CMT); FIELDS;
D O I
10.1007/JHEP07(2017)056
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
Based on the quantum renormalization group, we derive the bulk geometry that emerges in the holographic dual of the fermionic U(N) vector model at a nonzero charge density. The obstruction that prohibits the metallic state from being smoothly deformable to the direct product state under the renormalization group flow gives rise to a horizon at a finite radial coordinate in the bulk. The region outside the horizon is described by the Lifshitz geometry with a higher-spin hair determined by microscopic details of the boundary theory. On the other hand, the interior of the horizon is not described by any Riemannian manifold, as it exhibits an algebraic non-locality. The non-local structure inside the horizon carries the information on the shape of the filled Fermi sea.
引用
收藏
页数:17
相关论文
共 50 条
  • [41] Non-local temporal interference
    Rafsanjani, Ali Ayatollah
    Kazemi, MohammadJavad
    Hosseinzadeh, Vahid
    Golshani, Mehdi
    SCIENTIFIC REPORTS, 2024, 14 (01)
  • [42] A non-local model for a swarm
    Alexander Mogilner
    Leah Edelstein-Keshet
    Journal of Mathematical Biology, 1999, 38 : 534 - 570
  • [43] A non-local model for a swarm
    Mogilner, A
    Edelstein-Keshet, L
    JOURNAL OF MATHEMATICAL BIOLOGY, 1999, 38 (06) : 534 - 570
  • [44] Asymptotics of non-local perimeters
    Cygan, Wojciech
    Grzywny, Tomasz
    ANNALI DI MATEMATICA PURA ED APPLICATA, 2023, 202 (06) : 2629 - 2651
  • [45] Learning non-local dependencies
    Kuhn, Gustav
    Dienes, Zoltan
    COGNITION, 2008, 106 (01) : 184 - 206
  • [46] NON-LOCAL SPIRANTIZATION IN BRETON
    STUMP, GT
    JOURNAL OF LINGUISTICS, 1988, 24 (02) : 457 - 481
  • [47] NOTE ON THE NON-LOCAL INTERACTION
    SHONO, N
    ODA, N
    PROGRESS OF THEORETICAL PHYSICS, 1952, 8 (01): : 28 - 38
  • [48] Non-local cosmological evolutions
    Sanfrutos Carreras, M.
    Cembranos, J. A. R.
    TOWARDS NEW PARADIGMS: PROCEEDING OF THE SPANISH RELATIVITY MEETING 2011, 2012, 1458 : 519 - 522
  • [49] Non-local MHD turbulence
    Nazarenko, SV
    Newell, AC
    Galtier, S
    PHYSICA D, 2001, 152 : 646 - 652
  • [50] ODEMethods in Non-Local Equations
    Ao, Weiwei
    Chan, Hardy
    DelaTorre, Azahara
    Fontelos, Marco A.
    Gonzalez, Maria del Mar
    Wei, Juncheng
    JOURNAL OF MATHEMATICAL STUDY, 2020, 53 (04): : 370 - 401