On sets of discontinuities of functions continuous on all lines

被引:0
|
作者
Zajicek, LudeK [1 ]
机构
[1] Charles Univ Prague, Fac Math & Phys, Sokolovska 83, Prague 8, Karlin, Czech Republic
关键词
linear continuity; discontinuity sets; Banach space;
D O I
10.14712/1213-7243.2023.007
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Answering a question asked by K. C. Ciesielski and T. Glatzer in 2013, we construct a C1-smooth function f on [0,1] and a closed set M subset of graphf nowhere dense in graphf such that there does not exist any linearly continuous function on R2 (i.e., function continuous on all lines) which is discontinuous at each point of M. We substantially use a recent full characterization of sets of discontinuity points of linearly continuous functions on Rn proved by T. Banakh and O. Maslyuchenko in 2020. As an easy consequence of our result, we prove that the necessary condition for such sets of discontinuities proved by S. G. Slo-bodnik in 1976 is not sufficient. We also prove an analogue of this Slobodnik's result in separable Banach spaces.
引用
收藏
页码:487 / 505
页数:19
相关论文
共 50 条
  • [41] Cutting sets of continuous functions on the unit interval
    Balcerzak, Marek
    Nowakowski, Piotr
    Poplawski, Michal
    INDAGATIONES MATHEMATICAE-NEW SERIES, 2022, 33 (03): : 625 - 635
  • [42] Sets of range uniqueness for classes of continuous functions
    Burke, MR
    Ciesielski, K
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1999, 127 (11) : 3295 - 3304
  • [43] HAAR AMBIVALENT SETS IN THE SPACE OF CONTINUOUS FUNCTIONS
    Darji, U. B.
    White, S. C.
    ACTA MATHEMATICA HUNGARICA, 2010, 126 (03) : 230 - 240
  • [44] RANDOMLY CONTINUOUS-FUNCTIONS AND SIDON SETS
    RIDER, D
    DUKE MATHEMATICAL JOURNAL, 1975, 42 (04) : 759 - 764
  • [45] Images of Bernstein sets via continuous functions
    Cichon, Jacek
    Morayne, Michal
    Ralowski, Robert
    GEORGIAN MATHEMATICAL JOURNAL, 2019, 26 (04) : 499 - 503
  • [46] Haar ambivalent sets in the space of continuous functions
    U. B. Darji
    S. C. White
    Acta Mathematica Hungarica, 2010, 126 : 230 - 240
  • [47] On closed sets containing precomplete sets of a set of all unary functions
    Posypkin, MA
    VESTNIK MOSKOVSKOGO UNIVERSITETA SERIYA 1 MATEMATIKA MEKHANIKA, 1997, (04): : 58 - 59
  • [48] Solution of ill-posed problems on sets of functions convex along all lines parallel to coordinate axes
    Titarenko, V.
    Yagola, A.
    JOURNAL OF INVERSE AND ILL-POSED PROBLEMS, 2008, 16 (08): : 805 - 824
  • [49] Complementation in spaces of continuous functions on compact lines
    Kalenda, Ondrej F. K.
    Kubis, Wieslaw
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2012, 386 (01) : 241 - 257
  • [50] THEOREM ON LEVEL LINES OF CONTINUOUS-FUNCTIONS
    WAKSMAN, Z
    WASILEWSKY, J
    ISRAEL JOURNAL OF MATHEMATICS, 1977, 27 (3-4) : 247 - 251