On Classical Global Solutions of Nonlinear Wave Equations with Large Data
被引:14
|
作者:
Miao, Shuang
论文数: 0引用数: 0
h-index: 0
机构:
Univ Michigan, Dept Math, Ann Arbor, MI 48109 USA
Ecole Polytech Fed Lausanne, Batiment Math, CH-1015 Lausanne, SwitzerlandUniv Michigan, Dept Math, Ann Arbor, MI 48109 USA
Miao, Shuang
[1
,4
]
Pei, Long
论文数: 0引用数: 0
h-index: 0
机构:
Norwegian Univ Sci & Technol, Dept Math Sci, N-7491 Trondheim, NorwayUniv Michigan, Dept Math, Ann Arbor, MI 48109 USA
Pei, Long
[2
]
Yu, Pin
论文数: 0引用数: 0
h-index: 0
机构:
Tsinghua Univ, Dept Math, Yau Math Sci Ctr, Beijing 100084, Peoples R ChinaUniv Michigan, Dept Math, Ann Arbor, MI 48109 USA
Yu, Pin
[3
]
机构:
[1] Univ Michigan, Dept Math, Ann Arbor, MI 48109 USA
This article studies the Cauchy problem for systems of semi-linear wave equations on R3+1 with nonlinear terms satisfying the null conditions. We construct future global-in-time classical solutions with arbitrarily large initial energy. The choice of the large Cauchy initial data is inspired by Christodoulou's characteristic initial data in his work [2] on formation of black holes. The main innovation of the current work is that we discovered a relaxed energy ansatz which allows us to prove decay-in-time-estimate. Therefore, the new estimates can also be applied in studying the Cauchy problem for Einstein equations.
机构:
Univ Biskra, Lab Math Anal Probabil & Optimizat, POB 145, Biskra 07000, AlgeriaUniv Biskra, Lab Math Anal Probabil & Optimizat, POB 145, Biskra 07000, Algeria