PanoDepth: A Two-Stage Approach for Monocular Omnidirectional Depth Estimation

被引:7
|
作者
Li, Yuyan [1 ]
Yan, Zhixin [2 ]
Duan, Ye [1 ]
Ren, Liu [3 ]
机构
[1] Univ Missouri, Columbia, MO 65211 USA
[2] BOSCH Res China, Shanghai, Peoples R China
[3] BOSCH Res North Amer, Sunnyvale, CA USA
基金
美国国家科学基金会;
关键词
D O I
10.1109/3DV53792.2021.00074
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Omnidirectional 3D information is essential for a wide range of applications such as Virtual Reality, Autonomous Driving, Robotics, etc. In this paper, we propose a novel, model-agnostic, two-stage pipeline for omnidirectional monocular depth estimation. Our proposed framework PanoDepth takes one 360 image as input, produces one or more synthesized views in the first stage, and feeds the original image and the synthesized images into the subsequent stereo matching stage. In the second stage, we propose a differentiable Spherical Warping Layer to handle omnidirectional stereo geometry efficiently and effectively. By utilizing the explicit stereo-based geometric constraints in the stereo matching stage, PanoDepth can generate dense high-quality depth. We conducted extensive experiments and ablation studies to evaluate PanoDepth with both the full pipeline as well as the individual modules in each stage. Our results show that PanoDepth outperforms the state-of-the-art approaches by a large margin for 360 monocular depth estimation. Our code is available at https://github.com/yuyanli0831/PanoDepth_3dv.
引用
收藏
页码:648 / 658
页数:11
相关论文
共 50 条
  • [21] A Fast Analytical Two-Stage Initial-Parameters Estimation Method for Monocular-Inertial Navigation
    Wei, Hongyu
    Zhang, Tao
    Zhang, Liang
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2022, 71
  • [22] Parameter estimation via artificial data generation with the "two-stage" approach
    Garatti, Simone
    Bittanti, Sergio
    2008 7TH WORLD CONGRESS ON INTELLIGENT CONTROL AND AUTOMATION, VOLS 1-23, 2008, : 5605 - 5610
  • [23] A two-stage approach for target identification and pose estimation in infrared images
    Singh, A
    Pettersson, R
    Karlholm, J
    Berndt, A
    Brunnström, K
    MILITARY REMOTE SENSING, 2004, 5613 : 177 - 188
  • [24] Depth Completion with Morphological Operations: An Intermediate Approach to Enhance Monocular Depth Estimation
    Mendes, Raul Q.
    Ribeiro, Eduardo G.
    Rosa, Nicolas S.
    Grassi Jr, Valdir
    2020 XVIII LATIN AMERICAN ROBOTICS SYMPOSIUM, 2020 XII BRAZILIAN SYMPOSIUM ON ROBOTICS AND 2020 XI WORKSHOP OF ROBOTICS IN EDUCATION (LARS-SBR-WRE 2020), 2020, : 156 - 161
  • [25] Estimation in two-stage models with heteroscedasticity
    Buonaccorsi, John
    INTERNATIONAL STATISTICAL REVIEW, 2006, 74 (03) : 403 - 418
  • [26] A two-stage stepwise estimation procedure
    Chen, John T.
    BIOMETRICS, 2008, 64 (02) : 406 - 412
  • [27] Single-Stage Refinement CNN for Depth Estimation in Monocular Images
    Valdez Rodriguez, Jose E.
    Calvo, Hiram
    Felipe Riveron, Edgardo M.
    COMPUTACION Y SISTEMAS, 2020, 24 (02): : 439 - 451
  • [28] CNN Approach for Monocular Depth Estimation: Ear Case Study
    Magherini, Roberto
    Servi, Michaela
    Mussi, Elisa
    Furferi, Rocco
    Buonamici, Francesco
    Volpe, Yary
    DESIGN TOOLS AND METHODS IN INDUSTRIAL ENGINEERING II, ADM 2021, 2022, : 220 - 228
  • [29] The Monocular Depth Estimation Challenge
    Spencer, Jaime
    Qian, C. Stella
    Russell, Chris
    Hadfield, Simon
    Graf, Erich
    Adams, Wendy
    Schofield, Andrew J.
    Elder, James
    Bowden, Richard
    Cong, Heng
    Mattoccia, Stefano
    Poggi, Matteo
    Suri, Zeeshan Khan
    Tang, Yang
    Tosi, Fabio
    Wang, Hao
    Zhang, Youmin
    Zhang, Yusheng
    Zhao, Chaoqiang
    2023 IEEE/CVF WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION WORKSHOPS (WACVW), 2023, : 623 - 632
  • [30] Perceptual Monocular Depth Estimation
    Pan, Janice
    Bovik, Alan C.
    NEURAL PROCESSING LETTERS, 2021, 53 (02) : 1205 - 1228