Speed and fluctuations for some driven dimer models

被引:3
|
作者
Chhita, Sunil [1 ]
Ferrari, Patrik L. [2 ]
Toninelli, Fabio L. [3 ]
机构
[1] Univ Durham, Dept Math Sci, Stockton Rd, Durham DH1 3LE, England
[2] Univ Bonn, Inst Appl Math, Endenicher Allee 60, D-53115 Bonn, Germany
[3] Univ Claude Bernard Lyon 1, Univ Lyon, CNRS, Inst Camille Jordan,UMR 5208, F-69622 Villeurbanne, France
来源
关键词
Random surfaces; interacting particle systems; random tilings; limit shapes; determinantal processes; Kasteleyn matrices; (2+1)D GROWTH; STATISTICS; LATTICE;
D O I
10.4171/AIHPD/77
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider driven dimer models on the square and honeycomb graphs, starting from a stationary Gibbs measure. Each model can be thought of as a two dimensional stochastic growth model of an interface, belonging to the anisotropic KPZ universality class. We use a combinatorial approach to determine the speed of growth and show logarithmic growth in time of the variance of the height function.
引用
收藏
页码:489 / 532
页数:44
相关论文
共 50 条
  • [31] Dimer models and integrable systems
    Eager, Richard
    Franco, Sebastian
    Schaeffer, Kevin
    JOURNAL OF HIGH ENERGY PHYSICS, 2012, (06):
  • [32] Dimer models and group actions
    Akira Ishii
    Álvaro Nolla
    Kazushi Ueda
    Mathematische Zeitschrift, 2024, 306
  • [33] Dimer models and integrable systems
    Richard Eager
    Sebastián Franco
    Kevin Schaeffer
    Journal of High Energy Physics, 2012
  • [34] Adventures in holographic dimer models
    Kachru, Shamit
    Karch, Andreas
    Yaida, Sho
    NEW JOURNAL OF PHYSICS, 2011, 13
  • [35] Brane geometry and dimer models
    Yang-Hui He
    Vishnu Jejjala
    Diego Rodriguez-Gomez
    Journal of High Energy Physics, 2012
  • [36] Computational Accuracy and Speed of Some Knife-Edge Diffraction Models
    Bibb, Darcy A.
    Dang, Jonathan
    Yun, Zhengqing
    Iskander, Magdy F.
    2014 IEEE ANTENNAS AND PROPAGATION SOCIETY INTERNATIONAL SYMPOSIUM (APSURSI), 2014, : 705 - 706
  • [37] Dimer models and crepant resolutions
    Ishii, Akira
    Ueda, Kazushi
    HOKKAIDO MATHEMATICAL JOURNAL, 2016, 45 (01) : 1 - 42
  • [38] Dimer models and group actions
    Ishii, Akira
    Nolla, Alvaro
    Ueda, Kazushi
    MATHEMATISCHE ZEITSCHRIFT, 2024, 306 (01)
  • [39] Dimer models and Hochschild cohomology
    Wong, Michael
    JOURNAL OF ALGEBRA, 2021, 585 : 207 - 279
  • [40] Brane geometry and dimer models
    He, Yang-Hui
    Jejjela, Vishnu
    Rodriguez-Gomez, Diego
    JOURNAL OF HIGH ENERGY PHYSICS, 2012, (06):