Speed and fluctuations for some driven dimer models

被引:3
|
作者
Chhita, Sunil [1 ]
Ferrari, Patrik L. [2 ]
Toninelli, Fabio L. [3 ]
机构
[1] Univ Durham, Dept Math Sci, Stockton Rd, Durham DH1 3LE, England
[2] Univ Bonn, Inst Appl Math, Endenicher Allee 60, D-53115 Bonn, Germany
[3] Univ Claude Bernard Lyon 1, Univ Lyon, CNRS, Inst Camille Jordan,UMR 5208, F-69622 Villeurbanne, France
来源
关键词
Random surfaces; interacting particle systems; random tilings; limit shapes; determinantal processes; Kasteleyn matrices; (2+1)D GROWTH; STATISTICS; LATTICE;
D O I
10.4171/AIHPD/77
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider driven dimer models on the square and honeycomb graphs, starting from a stationary Gibbs measure. Each model can be thought of as a two dimensional stochastic growth model of an interface, belonging to the anisotropic KPZ universality class. We use a combinatorial approach to determine the speed of growth and show logarithmic growth in time of the variance of the height function.
引用
收藏
页码:489 / 532
页数:44
相关论文
共 50 条