Effects of the layout of film holes near the vane leading edge on the endwall cooling and phantom cooling of the vane suction side surface

被引:13
|
作者
Du, Kun [1 ,2 ]
Song, Liming [1 ]
Li, Jun [1 ]
Sunden, Bengt [2 ]
机构
[1] Xi An Jiao Tong Univ, Sch Energy & Power Engn, Inst Turbomachinery, Xian 710049, Peoples R China
[2] Lund Univ, Dept Energy Sci, Div Heat Transfer, SE-22100 Lund, Sweden
基金
中国国家自然科学基金; 瑞典研究理事会;
关键词
TURBINE ROTOR PASSAGE; HEAT-TRANSFER; HOT STREAKS; PERFORMANCE; SLOT;
D O I
10.1080/10407782.2017.1326788
中图分类号
O414.1 [热力学];
学科分类号
摘要
In the current research, effects of the layout of film holes near the first-stage vane leading edge on the endwall cooling and phantom cooling of the vane suction side surface were numerically studied. The computational results indicate that the case with a positive film-hole angle achieves a higher cooling effectiveness level on the endwall and vane suction side surface compared to the case with a corresponding negative film-hole angle. Furthermore, the location of the film hole has a significant influence on the cooling performance of the endwall and vane suction side surface. In addition, the case with a smaller distance from film holes to the vane stagnation also attains a slightly higher cooling effectiveness (phantom cooling effectiveness) on the vane suction side surface.
引用
收藏
页码:910 / 927
页数:18
相关论文
共 50 条
  • [31] Effect of Blockage Inside Holes on Film Cooling Performance on the Suction Side of a Turbine Guide Vane
    Zhang, Wei
    Zeng, Rui
    Liu, Song
    Li, Guangchao
    ENERGIES, 2022, 15 (08)
  • [32] Turbine Vane Endwall Film Cooling and Pressure Side Phantom Cooling Performances With Upstream Coolant Flow at Various Injection Angles
    Bai, Bo
    Li, Zhigang
    Li, Jun
    Mao, Shuo
    Ng, Wing F.
    JOURNAL OF THERMAL SCIENCE AND ENGINEERING APPLICATIONS, 2022, 14 (11)
  • [33] Sensitivity of the Overall Effectiveness to Film Cooling and Internal Cooling on a Turbine Vane Suction Side
    Williams, Randall P.
    Dyson, Thomas E.
    Bogard, David G.
    Bradshaw, Sean D.
    PROCEEDINGS OF THE ASME TURBO EXPO 2012, VOL 4, PTS A AND B, 2012, : 1549 - +
  • [34] Sensitivity of the Overall Effectiveness to Film Cooling and Internal Cooling on a Turbine Vane Suction Side
    Williams, Randall P.
    Dyson, Thomas E.
    Bogard, David G.
    Bradshaw, Sean D.
    JOURNAL OF TURBOMACHINERY-TRANSACTIONS OF THE ASME, 2014, 136 (03):
  • [35] Degradation of film cooling performance on a turbine vane suction side due to surface roughness
    Rutledge, James L.
    Robertson, David
    Bogard, David G.
    Proceedings of the ASME Turbo Expo 2005, Vol 3 Pts A and B, 2005, : 879 - 887
  • [36] Degradation of film cooling performance on a turbine vane suction side due to surface roughness
    Rutledge, JL
    Robertson, D
    Bogard, DG
    JOURNAL OF TURBOMACHINERY-TRANSACTIONS OF THE ASME, 2006, 128 (03): : 547 - 554
  • [37] HEAT TRANSFER MEASUREMENTS OF VANE ENDWALL WITH FILM COOLING AND IMPINGEMENT COOLING
    Li, Xueying
    Li, Mingfei
    Ren, Jing
    Jiang, Hongde
    ASME TURBO EXPO: TURBINE TECHNICAL CONFERENCE AND EXPOSITION, 2015, VOL 5B, 2015,
  • [38] Film cooling effectiveness investigation of diffusion slot holes on a turbine guide vane leading edge
    Hu, Jia-Jun
    An, Bai-Tao
    INTERNATIONAL COMMUNICATIONS IN HEAT AND MASS TRANSFER, 2024, 158
  • [39] Leading Edge Film Cooling Enhancement for an Inlet Guide Vane with Fan-Shaped Holes
    Liu, Jian-Jun
    An, Bai-Tao
    Liu, Jie
    W, Zhan
    JOURNAL OF THERMAL SCIENCE, 2010, 19 (06) : 514 - 518