Resonant-Based Identification of the Poisson's Ratio of Orthotropic Materials

被引:10
|
作者
Lauwagie, T. [2 ]
Lambrinou, K. [1 ]
Sol, H. [4 ]
Heylen, W. [3 ]
机构
[1] IMEC, B-3001 Louvain, Belgium
[2] Dynam Design Solut, B-3001 Louvain, Belgium
[3] Katholieke Univ Leuven, Dept Mech Engn, B-3001 Louvain, Belgium
[4] Vrije Univ Brussel, Dept Mech Mat & Construct, B-1050 Brussels, Belgium
关键词
Elastic parameters; Poisson's ratio; Vibration methods; Material identification;
D O I
10.1007/s11340-009-9250-9
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The resonant-based identification of the in-plane elastic properties of orthotropic materials implies the estimation of four principal elastic parameters: E (1) , E (2) , G (12) , and nu (12) . The two elastic moduli and the shear modulus can easily be derived from the resonant frequencies of the flexural and torsional vibration modes, respectively. The identification of the Poisson's ratio, however, is much more challenging, since most frequencies are not sufficiently sensitive to it. The present work addresses this problem by determining the test specimen specifications that create the optimal conditions for the identification of the Poisson's ratio. Two methods are suggested for the determination of the Poisson's ratio of orthotropic materials: the first employs the resonant frequencies of a plate-shaped specimen, while the second uses the resonant frequencies of a set of beam-shaped specimens. Both methods are experimentally validated using a stainless steel sheet.
引用
收藏
页码:437 / 447
页数:11
相关论文
共 50 条
  • [21] A horizontal punch on a layered and orthotropic composite system with negative Poisson's ratio
    Li, J. E.
    Wang, B. L.
    [J]. MECHANICS OF ADVANCED MATERIALS AND STRUCTURES, 2023, 30 (10) : 2101 - 2110
  • [22] Measurement of the Poisson's Ratio of Materials Based on the Bending Mode of the Cantilever Plate
    Gao, Zizhen
    Zhang, Xian
    Wang, Yunlu
    Yang, Renchen
    Wang, Ganggang
    Wang, Zheng
    [J]. BIORESOURCES, 2016, 11 (03): : 5703 - 5721
  • [23] Negative Poisson's ratio in hollow sphere materials
    Shufrin, Igor
    Pasternak, Elena
    Dyskin, Arcady V.
    [J]. INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 2015, 54 : 192 - 214
  • [24] Multiscale Hybrid Materials with Negative Poisson's Ratio
    Pasternak, E.
    Dyskin, A. V.
    [J]. IUTAM SYMPOSIUM ON SCALING IN SOLID MECHANICS, 2009, 10 : 49 - +
  • [25] Materials and structures with macroscopic negative Poisson's ratio
    Pasternak, E.
    Dyskin, A. V.
    [J]. INTERNATIONAL JOURNAL OF ENGINEERING SCIENCE, 2012, 52 : 103 - 114
  • [26] Negative Poisson's Ratio in Modern Functional Materials
    Huang, Chuanwei
    Chen, Lang
    [J]. ADVANCED MATERIALS, 2016, 28 (37) : 8079 - 8096
  • [27] Method and device for determining the materials Poisson's ratio
    Atanasiu, C.
    Stoica, Madalina
    Constantineseu, D.M.
    [J]. IPB Buletin Stiintific - Mechanical Engineering, 1991, 53 (1-2):
  • [28] The bulk modulus and Poisson's ratio of "incompressible" materials
    Mott, P. H.
    Dorgan, J. R.
    Roland, C. M.
    [J]. JOURNAL OF SOUND AND VIBRATION, 2008, 312 (4-5) : 572 - 575
  • [29] Author Correction: Poisson's ratio and modern materials
    G. N. Greaves
    A. L. Greer
    R. S. Lakes
    T. Rouxel
    [J]. Nature Materials, 2019, 18 (4) : 406 - 406
  • [30] About negativity of the Poisson’s ratio for anisotropic materials
    R. V. Goldstein
    V. A. Gorodtsov
    D. S. Lisovenko
    [J]. Doklady Physics, 2009, 54 : 546 - 548