Amorphous silicon enhanced metal-insulator-semiconductor contacts for silicon solar cells

被引:26
|
作者
Bullock, J. [1 ]
Cuevas, A. [1 ]
Yan, D. [1 ]
Demaurex, B. [2 ]
Hessler-Wyser, A. [2 ]
De Wolf, S. [2 ]
机构
[1] Australian Natl Univ, Res Sch Engn, Canberra, ACT 0200, Australia
[2] EPFL, IMT, Photovolta & Thin Film Elect Lab PVLab, CH-2000 Neuchatel, Switzerland
关键词
INDUCED CRYSTALLIZATION; SURFACE PASSIVATION; ALUMINUM-OXIDE; LAYERS; AL2O3;
D O I
10.1063/1.4900539
中图分类号
O59 [应用物理学];
学科分类号
摘要
Carrier recombination at the metal-semiconductor contacts has become a significant obstacle to the further advancement of high-efficiency diffused-junction silicon solar cells. This paper provides the proof-of-concept of a procedure to reduce contact recombination by means of enhanced metal-insulator-semiconductor (MIS) structures. Lightly diffused n(+) and p(+) surfaces are passivated with SiO2/a-Si:H and Al2O3/a-Si:H stacks, respectively, before the MIS contacts are formed by a thermally activated alloying process between the a-Si: H layer and an overlying aluminum film. Transmission/scanning transmission electron microscopy (TEM/STEM) and energy dispersive x-ray spectroscopy are used to ascertain the nature of the alloy. Idealized solar cell simulations reveal that MIS(n(+)) contacts, with SiO2 thicknesses of similar to 1.55 nm, achieve the best carrier-selectivity producing a contact resistivity rho(c) of similar to 3 m Omega cm(2) and a recombination current density J(0c) of similar to 40 fA/cm(2). These characteristics are shown to be stable at temperatures up to 350 degrees C. The MIS(p(+)) contacts fail to achieve equivalent results both in terms of thermal stability and contact characteristics but may still offer advantages over directly metallized contacts in terms of manufacturing simplicity. (C) 2014 AIP Publishing LLC.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] Amorphous silicon passivated contacts for diffused junction silicon solar cells
    Bullock, J.
    Yan, D.
    Wan, Y.
    Cuevas, A.
    Demaurex, B.
    Hessler-Wyser, A.
    De Wolf, S.
    JOURNAL OF APPLIED PHYSICS, 2014, 115 (16)
  • [22] EFFECT OF DISLOCATIONS IN METAL-INSULATOR-SEMICONDUCTOR SOLAR-CELLS
    DIVIGALPITIYA, WMR
    MORRISON, SR
    JOURNAL OF APPLIED PHYSICS, 1986, 60 (01) : 406 - 412
  • [23] A PINHOLE MODEL FOR METAL-INSULATOR-SEMICONDUCTOR SOLAR-CELLS
    ROTHWARF, A
    PEREYRA, I
    SOLID-STATE ELECTRONICS, 1981, 24 (11) : 1067 - 1070
  • [24] MODEL CALCULATIONS FOR METAL-INSULATOR-SEMICONDUCTOR SOLAR-CELLS
    OLSEN, LC
    SOLID-STATE ELECTRONICS, 1977, 20 (09) : 741 - 751
  • [25] Undoped SiGe FETs With Metal-Insulator-Semiconductor Contacts
    Chen, Liang-Yu
    Hsieh, Yu-Feng
    Kao, Kuo-Hsing
    2017 SILICON NANOELECTRONICS WORKSHOP (SNW), 2017, : 95 - 96
  • [26] ADVANTAGES OF METAL-INSULATOR SEMICONDUCTOR STRUCTURES FOR SILICON SOLAR-CELLS
    GREEN, MA
    BLAKERS, AW
    SOLAR CELLS, 1983, 8 (01): : 3 - 16
  • [27] Observation of memory effect in germanium nanocrystals embedded in an amorphous silicon oxide matrix of a metal-insulator-semiconductor structure
    Choi, WK
    Chim, WK
    Heng, CL
    Teo, LW
    Ho, V
    Ng, V
    Antoniadis, DA
    Fitzgerald, EA
    APPLIED PHYSICS LETTERS, 2002, 80 (11) : 2014 - 2016
  • [28] Engineering Interfacial Silicon Dioxide for Improved Metal-Insulator-Semiconductor Silicon Photoanode Water Splitting Performance
    Satterthwaite, Peter F.
    Scheuermann, Andrew G.
    Hurley, Paul K.
    Chidsey, Christopher E. D.
    McIntyre, Paul C.
    ACS APPLIED MATERIALS & INTERFACES, 2016, 8 (20) : 13140 - 13149
  • [29] METAL-INSULATOR-SEMICONDUCTOR SOLAR-CELLS USING AMORPHOUS SI-F-H ALLOYS
    MADAN, A
    MCGILL, J
    CZUBATYJ, W
    YANG, J
    OVSHINSKY, SR
    APPLIED PHYSICS LETTERS, 1980, 37 (09) : 826 - 828
  • [30] DOES A SCALING THEORY DESCRIBE THE MAGNETOCONDUCTIVITY OF SILICON METAL-INSULATOR-SEMICONDUCTOR STRUCTURES
    KRAVCHENKO, SV
    PUDALOV, VM
    JETP LETTERS, 1989, 50 (02) : 73 - 77