Complex Korteweg-de Vries equation: A deeper theory of shallow water waves

被引:7
|
作者
Crabb, M. [1 ]
Akhmediev, N. [1 ]
机构
[1] Australian Natl Univ, Res Sch Phys, Dept Theoret Phys, Canberra, ACT 2600, Australia
关键词
NONLINEAR SCHRODINGER-EQUATION; KDV EQUATION; SOLITARY WAVES; GRAVITY-WAVES; ENVELOPE;
D O I
10.1103/PhysRevE.103.022216
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Using Levi-Civita's theory of ideal fluids, we derive the complex Korteweg-de Vries (KdV) equation, describing the complex velocity of a shallow fluid up to first order. We use perturbation theory, and the long wave, slowly varying velocity approximations for shallow water. The complex KdV equation describes the nontrivial dynamics of all water particles from the surface to the bottom of the water layer. A crucial step made in our work is the proof that a natural consequence of the complex KdV theory is that the wave elevation is described by the real KdV equation. The complex KdV approach in the theory of shallow fluids is thus more fundamental than the one based on the real KdV equation. We demonstrate how it allows direct calculation of the particle trajectories at any point of the fluid, and that these results agree well with numerical simulations of other authors.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Computational analysis of shallow water waves with Korteweg-de Vries equation
    Ak, T.
    Triki, H.
    Dhawan, S.
    Bhowmik, S. K.
    Moshokoa, S. P.
    Ullah, M. Z.
    Biswas, A.
    [J]. SCIENTIA IRANICA, 2018, 25 (05) : 2582 - 2597
  • [2] Shallow-water rogue waves: An approach based on complex solutions of the Korteweg-de Vries equation
    Ankiewicz, A.
    Bokaeeyan, Mahyar
    Akhmediev, N.
    [J]. PHYSICAL REVIEW E, 2019, 99 (05)
  • [3] A mathematical fractional model of waves on Shallow water surfaces: The Korteweg-de Vries equation
    Awadalla, Muath
    Ganie, Abdul Hamid
    Fathima, Dowlath
    Khan, Adnan
    Alahmadi, Jihan
    [J]. AIMS MATHEMATICS, 2024, 9 (05): : 10561 - 10579
  • [4] KORTEWEG-DE VRIES EQUATION AND WATER WAVES - SOLUTIONS OF EQUATION .1.
    SEGUR, H
    [J]. JOURNAL OF FLUID MECHANICS, 1973, 59 (AUG7) : 721 - 736
  • [5] Modelling Fractal Waves on Shallow Water Surfaces via Local Fractional Korteweg-de Vries Equation
    Yang, Xiao-Jun
    Hristov, Jordan
    Srivastava, H. M.
    Ahmad, Bashir
    [J]. ABSTRACT AND APPLIED ANALYSIS, 2014,
  • [6] KORTEWEG-DE VRIES EQUATION FOR NONLINEAR DRIFT WAVES
    TODOROKI, J
    SANUKI, H
    [J]. PHYSICS LETTERS A, 1974, A 48 (04) : 277 - 278
  • [7] KORTEWEG-DE VRIES EQUATION
    SHABAT, AB
    [J]. DOKLADY AKADEMII NAUK SSSR, 1973, 211 (06): : 1310 - 1313
  • [8] KORTEWEG-DE VRIES EQUATION
    TSUTSUMI, M
    [J]. PROCEEDINGS OF THE JAPAN ACADEMY, 1975, 51 (06): : 399 - 401
  • [9] Boundary Stabilization of the Korteweg-de Vries Equation and the Korteweg-de Vries-Burgers Equation
    Chaohua Jia
    Bing-Yu Zhang
    [J]. Acta Applicandae Mathematicae, 2012, 118 : 25 - 47
  • [10] Irrotational water waves and the complex Korteweg de Vries equation
    Levi, D
    Sanielevici, M
    [J]. PHYSICA D, 1996, 98 (2-4): : 510 - 514