Shallow-water rogue waves: An approach based on complex solutions of the Korteweg-de Vries equation

被引:21
|
作者
Ankiewicz, A. [1 ]
Bokaeeyan, Mahyar [1 ]
Akhmediev, N. [1 ]
机构
[1] Australian Natl Univ, Res Sch Phys & Engn, Opt Sci Grp, Canberra, ACT 2600, Australia
基金
澳大利亚研究理事会;
关键词
KDV EQUATION;
D O I
10.1103/PhysRevE.99.050201
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The formation of rogue waves in shallow water is presented in this Rapid Communication by providing the three lowest-order exact rational solutions to the Korteweg-de Vries (KdV) equation. They have been obtained from the modified KdV equation by using the complex Miura transformation. It is found that the amplitude amplification factor of such waves formed in shallow water is much larger than the amplitude amplification factor of those occurring in deep water. These solutions clearly demonstrate a potential hazard for coastal areas. They can also provide a solid mathematical basis for the existence of abnormally large-amplitude waves in other branches of nonlinear physics such as optics, unidirectional crystal growth, and in quantum mechanics.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] Complex Korteweg-de Vries equation: A deeper theory of shallow water waves
    Crabb, M.
    Akhmediev, N.
    [J]. PHYSICAL REVIEW E, 2021, 103 (02)
  • [2] Computational analysis of shallow water waves with Korteweg-de Vries equation
    Ak, T.
    Triki, H.
    Dhawan, S.
    Bhowmik, S. K.
    Moshokoa, S. P.
    Ullah, M. Z.
    Biswas, A.
    [J]. SCIENTIA IRANICA, 2018, 25 (05) : 2582 - 2597
  • [3] ROGUE WAVE MULTIPLETS IN THE COMPLEX KORTEWEG-DE VRIES EQUATION
    Crabb, M.
    Akhmediev, N.
    [J]. ROMANIAN REPORTS IN PHYSICS, 2020, 72 (04)
  • [4] Comment on "Shallow-water soliton dynamics beyond the Korteweg-de Vries equation"
    Burde, G. I.
    [J]. PHYSICAL REVIEW E, 2020, 101 (03)
  • [5] Energy invariant for shallow-water waves and the Korteweg-de Vries equation: Doubts about the invariance of energy
    Karczewska, Anna
    Rozmej, Piotr
    Infeld, Eryk
    [J]. PHYSICAL REVIEW E, 2015, 92 (05):
  • [6] Rogue waves on an elliptic function background in complex modified Korteweg-de Vries equation
    Sinthuja, N.
    Manikandan, K.
    Senthilvelan, M.
    [J]. PHYSICA SCRIPTA, 2021, 96 (10)
  • [7] KORTEWEG-DE VRIES EQUATION AND WATER WAVES - SOLUTIONS OF EQUATION .1.
    SEGUR, H
    [J]. JOURNAL OF FLUID MECHANICS, 1973, 59 (AUG7) : 721 - 736
  • [8] Nonlinear waves, modulations and rogue waves in the modular Korteweg-de Vries equation
    Slunyaev, Alexey V.
    Kokorina, Anna V.
    Pelinovsky, Efim N.
    [J]. arXiv, 2023,
  • [9] Nonlinear waves, modulations and rogue waves in the modular Korteweg-de Vries equation
    Slunyaev, A. V.
    Kokorina, A. V.
    Pelinovsky, E. N.
    [J]. COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2023, 127
  • [10] PHENOMENA ON ROGUE WAVES AND RATIONAL SOLUTION OF KORTEWEG-DE VRIES EQUATION
    Song, Ni
    Zhang, Wei
    Wang, Qian
    [J]. PROCEEDINGS OF THE ASME INTERNATIONAL DESIGN ENGINEERING TECHNICAL CONFERENCES AND COMPUTERS AND INFORMATION IN ENGINEERING CONFERENCE, 2013, VOL 7B, 2014,