An intelligent fault diagnosis framework for raw vibration signals: adaptive overlapping convolutional neural network

被引:51
|
作者
Qian, Weiwei [1 ]
Li, Shunming [1 ]
Wang, Jinrui [1 ]
An, Zenghui [1 ]
Jiang, Xingxing [2 ]
机构
[1] Nanjing Univ Aeronaut & Astronaut, Coll Energy & Power Engn, Nanjing 210016, Jiangsu, Peoples R China
[2] Soochow Univ, Sch Urban Rail Transportat, Suzhou 215137, Peoples R China
基金
中国国家自然科学基金;
关键词
intelligent fault diagnosis; vibration signal processing; CNN; sparse filtering; activation function; ROTATING MACHINERY; RECOGNITION;
D O I
10.1088/1361-6501/aad101
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Intelligent fault diagnosis methods are promising in dealing with mechanical big data owing to their efficiency in extracting representative features. However, there is always an undesirable shift variant property embedded in raw vibration signals, which hinders the direct use of raw signals in fault diagnosis networks. A convolutional neural network (CNN) is a widely used and efficient method to extract features in various fields for its excellent sparse connectivity, equivalent representation and weight sharing properties. However, raw CNN is time-consuming and has a marginal problem. Heuristically, we construct a fault diagnosis framework called adaptive overlapping CNN (AOCNN) to deal with one dimension (1D) raw vibration signals directly. The shift variant problem is dealt with by the adaptive convolutional layer and the root-mean-square (RMS) pooling layer, and the marginal problem embedded in the CNN is relieved by employing the overlapping layer. Meanwhile, the AOCNN is also characterized by adopting different convolutional strides and diverse activation functions in feature extraction network training and usage. Furthermore, sparse filtering is embedded into the AOCNN, and experiments on a bearing dataset and a gearbox dataset are conducted to verify the validity of the proposed method separately. When compared with other state-of-the-art methods this method reveals its superiority.
引用
收藏
页数:13
相关论文
共 50 条
  • [11] Higher Order Spectral Analysis of Vibration Signals and Convolutional Neural Network for the Fault Diagnosis of an Induction Motor Bearings
    Sohaib, Muhammad
    Kim, Jong-Myon
    COMPUTATIONAL INTELLIGENCE IN INFORMATION SYSTEMS (CIIS 2018), 2019, 888 : 3 - 12
  • [12] An adaptive deep convolutional neural network for rolling bearing fault diagnosis
    Wang Fuan
    Jiang Hongkai
    Shao Haidong
    Duan Wenjing
    Wu Shuaipeng
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2017, 28 (09)
  • [13] Application of adaptive convolutional neural network in rotating machinery fault diagnosis
    Li T.
    Duan L.
    Zhang D.
    Zhao S.
    Huang H.
    Bi C.
    Yuan Z.
    Zhendong yu Chongji/Journal of Vibration and Shock, 2020, 39 (16): : 275 - 282and288
  • [14] Intelligent Fault Diagnosis of Gearbox Under Variable Working Conditions With Adaptive Intraclass and Interclass Convolutional Neural Network
    Zhao, Xiaoli
    Yao, Jianyong
    Deng, Wenxiang
    Ding, Peng
    Ding, Yifei
    Jia, Minping
    Liu, Zheng
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2023, 34 (09) : 6339 - 6353
  • [15] Intelligent Bearing Fault Diagnosis Based on Open Set Convolutional Neural Network
    Zhang, Bo
    Zhou, Caicai
    Li, Wei
    Ji, Shengfei
    Li, Hengrui
    Tong, Zhe
    Ng, See-Kiong
    MATHEMATICS, 2022, 10 (21)
  • [16] Intelligent Fault Diagnosis for Machinery Based on Enhanced Transfer Convolutional Neural Network
    Chen, Zhuyun
    Zhong, Qi
    Huang, Ruyi
    Liao, Yixiao
    Li, Jipu
    Li, Weihua
    Jixie Gongcheng Xuebao/Journal of Mechanical Engineering, 2021, 57 (21): : 96 - 105
  • [17] Intelligent Fault Diagnosis for Rotary Machinery Using Transferable Convolutional Neural Network
    Chen, Zhuyun
    Gryllias, Konstantinos
    Li, Weihua
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2020, 16 (01) : 339 - 349
  • [18] Intelligent fault diagnosis for rolling bearing based on improved convolutional neural network
    Gong W.-F.
    Chen H.
    Zhang Z.-H.
    Zhang M.-L.
    Guan C.
    Wang X.
    Zhendong Gongcheng Xuebao/Journal of Vibration Engineering, 2020, 33 (02): : 400 - 413
  • [19] Bearing Intelligent Fault Diagnosis Based on Wavelet Transform and Convolutional Neural Network
    Guo, Junfeng
    Liu, Xingyu
    Li, Shuangxue
    Wang, Zhiming
    SHOCK AND VIBRATION, 2020, 2020
  • [20] ECNN: Intelligent Fault Diagnosis Method Using Efficient Convolutional Neural Network
    Zhang, Chao
    Huang, Qixuan
    Zhang, Chaoyi
    Yang, Ke
    Cheng, Liye
    Li, Zhan
    ACTUATORS, 2022, 11 (10)