A note on the integrability of the classical portfolio selection model

被引:4
|
作者
Naicker, V. [2 ]
O'Hara, J. G. [1 ]
Leach, P. G. L. [3 ]
机构
[1] Univ Essex, Ctr Computat Finance & Econ Agents, Colchester CO4 3SQ, Essex, England
[2] Univ KwaZulu Natal, Sch Phys, Quantum Informat & Computat Grp, ZA-4000 Durban, South Africa
[3] Univ KwaZulu Natal, Sch Math Sci, ZA-4000 Durban, South Africa
关键词
Lie symmetry analysis; Portfolio selection theory; Differential equations; GROUP-INVARIANT SOLUTIONS; CONSUMPTION; EQUATION; PRICES;
D O I
10.1016/j.aml.2010.04.046
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We revisit the classical Merton portfolio selection model from the perspective of integrability analysis. By an application of a nonlocal transformation the nonlinear partial differential equation for the two-asset model is mapped into a linear option valuation equation with a consumption dependent source term. This result is identical to the one obtained by Cox-Huang [J.C. Cox, C-f. Huang, Optimal consumption and portfolio policies when asset prices follow a diffusion process, J. Econom. Theory 49 (1989) 33-88], using measure theory and stochastic integrals. The nonlinear two-asset equation is then analyzed using the theory of Lie symmetry groups. We show that the linearization is directly related to the structure of the generalized symmetries. (C) 2010 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1114 / 1119
页数:6
相关论文
共 50 条
  • [31] Portfolio Selection Model with Derivative Securities
    王春峰
    杨建林
    蒋祥林
    Transactions of Tianjin University, 2003, (01) : 68 - 70
  • [32] Model predictive control for portfolio selection
    Herzog, Florian
    Keel, Simon
    Dondi, Gabriel
    Schumann, Lorenz M.
    Geering, Hans P.
    2006 AMERICAN CONTROL CONFERENCE, VOLS 1-12, 2006, 1-12 : 1252 - +
  • [33] No arbitrage and a linear portfolio selection model
    Bruni, Renato
    Cesarone, Francesco
    Scozzari, Andrea
    Tardella, Fabio
    ECONOMICS BULLETIN, 2013, 33 (02): : 1247 - 1258
  • [34] A stochastic programming model for portfolio selection
    Chang, Kuo-Hwa
    Chen, Hsiang-Ju
    Liu, Chang-Yuh
    Journal of the Chinese Institute of Industrial Engineers, 2002, 19 (03): : 31 - 41
  • [35] BAYESIAN MODEL FOR PORTFOLIO SELECTION AND REVISION
    WINKLER, RL
    BARRY, CB
    JOURNAL OF FINANCE, 1975, 30 (01): : 179 - 192
  • [36] A stochastic convergence model for portfolio selection
    Puelz, AV
    OPERATIONS RESEARCH, 2002, 50 (03) : 462 - 476
  • [37] A novel hybrid model for portfolio selection
    Ong, CS
    Huang, HJ
    Tzeng, GH
    APPLIED MATHEMATICS AND COMPUTATION, 2005, 169 (02) : 1195 - 1210
  • [38] Portfolio selection model with information cost
    Banek, T
    Kowalik, P
    Kozlowski, E
    CONTROL AND CYBERNETICS, 1999, 28 (01): : 89 - 99
  • [39] A NOTE ON OPTIMAL PORTFOLIO SELECTION UNDER STABLE PARETIAN DISTRIBUTIONS
    CHEUNG, CS
    KWAN, CCY
    YIP, PCY
    DECISION SCIENCES, 1985, 16 (04) : 435 - 441
  • [40] A note on a minimax rule for portfolio selection and equilibrium price system
    Wu, Zhu-Wu
    Song, Xue-Feng
    Xu, Ying-Ying
    Liu, Kun
    APPLIED MATHEMATICS AND COMPUTATION, 2009, 208 (01) : 49 - 57