Numerical Detection of Stochastic to Deterministic Transition

被引:0
|
作者
Singh, R. K. Brojen [1 ,2 ]
机构
[1] Jawaharlal Nehru Univ, Sch Computat & Integrat Sci, New Delhi 110067, India
[2] Jamia Millia Islamia, Ctr Interdisciplinary Res Basic Sci, New Delhi 110025, India
来源
关键词
noise parameter; chemical oscillator; fluctuating limit cycle oscillation; Master equation; chemical Langevin equation; GENE-EXPRESSION; CHEMICAL-KINETICS; SYSTEMS; NOISE; OSCILLATIONS; LIMIT;
D O I
10.1115/1.4027441
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
We present the numerical estimation of noise parameter induced in the dynamics of the variables by random particle interactions involved in the stochastic chemical oscillator and use it as order parameter to detect the transition from stochastic to deterministic regime. In stochastic regime, this noise parameter is found to be increased as system size decreases, whereas in deterministic regime it remains constant to minimum value as system size increases. This let the transition from fluctuating to fixed limit cycle oscillation as the system goes from stochastic to deterministic transition. We also numerically estimated the strength of the noise parameter involved both in chemical Langevin equation and Master equation formalisms and found that strength of this parameter is much smaller in the former than the latter.
引用
收藏
页数:5
相关论文
共 50 条
  • [31] Numerical attractors and approximations for stochastic or deterministic sine-Gordon lattice equations
    Yang, Shuang
    Li, Yangrong
    APPLIED MATHEMATICS AND COMPUTATION, 2022, 413
  • [32] Numerical Approach to Spatial Deterministic-Stochastic Models Arising in Cell Biology
    Schaff, James C.
    Gao, Fei
    Li, Ye
    Novak, Igor L.
    Slepchenko, Boris M.
    PLOS COMPUTATIONAL BIOLOGY, 2016, 12 (12)
  • [33] Comparison of deterministic with stochastic fracture models in water-flooding numerical simulations
    Belayneh, Mandefro W.
    Matthai, Stephen K.
    Blunt, Martin J.
    Rogers, Stephen F.
    AAPG BULLETIN, 2009, 93 (11) : 1633 - 1648
  • [34] Network Anomaly Detection: A Survey and Comparative Analysis of Stochastic and Deterministic Methods
    Wang, Jing
    Rossell, Daniel
    Cassandras, Christos G.
    Paschalidis, Ioannis Ch.
    2013 IEEE 52ND ANNUAL CONFERENCE ON DECISION AND CONTROL (CDC), 2013, : 182 - 187
  • [35] STOCHASTIC VERSUS DETERMINISTIC
    LADDE, GS
    SAMBANDHAM, M
    MATHEMATICS AND COMPUTERS IN SIMULATION, 1982, 24 (06) : 507 - 514
  • [36] Stochastic and deterministic bundles
    Léandre R.
    Ukrainian Mathematical Journal, 2005, 57 (9) : 1502 - 1506
  • [37] NUMERICAL-METHODS OF SOLUTION FOR MINIMAXIMAL DETERMINISTIC AND STOCHASTIC PROBLEMS - RUSSIAN - NURMINSKII,EA
    PICEK, K
    EKONOMICKO-MATEMATICKY OBZOR, 1981, 17 (01): : 114 - 115
  • [38] NUMERICAL-SOLUTION OF DIFFERENTIAL-EQUATIONS IN THE DETERMINISTIC LIMIT OF STOCHASTIC-THEORY
    ADOMIAN, G
    SARAFYAN, D
    APPLIED MATHEMATICS AND COMPUTATION, 1981, 8 (02) : 111 - 119
  • [39] A NEW DETERMINISTIC FORMULATION FOR DYNAMIC STOCHASTIC PROGRAMMING PROBLEMS AND ITS NUMERICAL COMPARISON WITH OTHERS
    陈志平
    NumericalMathematicsAJournalofChineseUniversities(EnglishSeries), 2003, (02) : 173 - 185
  • [40] Stochastic Resonance Versus Deterministic Resonance During Variable Controlled Ventilation: A Numerical Investigation
    Huhle, R.
    Amini, R.
    Herrmann, J.
    Guldner, A.
    De Abreu, M. Gama
    Kaczka, D. W.
    AMERICAN JOURNAL OF RESPIRATORY AND CRITICAL CARE MEDICINE, 2017, 195