Numerical Detection of Stochastic to Deterministic Transition

被引:0
|
作者
Singh, R. K. Brojen [1 ,2 ]
机构
[1] Jawaharlal Nehru Univ, Sch Computat & Integrat Sci, New Delhi 110067, India
[2] Jamia Millia Islamia, Ctr Interdisciplinary Res Basic Sci, New Delhi 110025, India
来源
关键词
noise parameter; chemical oscillator; fluctuating limit cycle oscillation; Master equation; chemical Langevin equation; GENE-EXPRESSION; CHEMICAL-KINETICS; SYSTEMS; NOISE; OSCILLATIONS; LIMIT;
D O I
10.1115/1.4027441
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
We present the numerical estimation of noise parameter induced in the dynamics of the variables by random particle interactions involved in the stochastic chemical oscillator and use it as order parameter to detect the transition from stochastic to deterministic regime. In stochastic regime, this noise parameter is found to be increased as system size decreases, whereas in deterministic regime it remains constant to minimum value as system size increases. This let the transition from fluctuating to fixed limit cycle oscillation as the system goes from stochastic to deterministic transition. We also numerically estimated the strength of the noise parameter involved both in chemical Langevin equation and Master equation formalisms and found that strength of this parameter is much smaller in the former than the latter.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] Deterministic and stochastic aspects of the transition to turbulence
    Song, Baofang
    Hof, Bjoern
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2014,
  • [2] Transition from deterministic to stochastic deformation
    Ngan, A. H. W.
    Ng, K. S.
    PHILOSOPHICAL MAGAZINE, 2010, 90 (14) : 1937 - 1954
  • [3] Numerical analysis of deterministic and stochastic Petri nets with concurrent deterministic transitions
    Lindemann, C
    Shedler, GS
    PERFORMANCE EVALUATION, 1996, 27-8 : 565 - 582
  • [4] GALACTIC DETONATION-WAVES - NUMERICAL-MODELS ILLUSTRATING THE TRANSITION FROM DETERMINISTIC TO STOCHASTIC
    FREEDMAN, WL
    MADORE, BF
    MEHTA, S
    ASTROPHYSICAL JOURNAL, 1984, 282 (02): : 412 - 426
  • [5] The Numerical Algorithms for the Measurement of the Deterministic and Stochastic Signals
    Keller, Alevtina V.
    Shestakov, Alexander L.
    Sviridyuk, Georgy A.
    Khudyakov, Yurii V.
    SEMIGROUPS OF OPERATORS - THEORY AND APPLICATIONS, 2015, 113 : 183 - 195
  • [6] Transition from deterministic chaos to a stochastic process
    Max-Planck-Inst fuer Physik, komplexer Systeme, Dresden, Germany
    Phys A Stat Theor Phys, 1-4 (105-117):
  • [7] The transition from deterministic chaos to a stochastic process
    Kantz, H
    Olbrich, E
    PHYSICA A, 1998, 253 (1-4): : 105 - 117
  • [8] Numerical treatments for some stochastic-deterministic chaotic
    Sweilam, N. H.
    AL-Mekhlafi, S. M.
    Hassan, S. M.
    Alsenaideh, N. R.
    Radwan, A. E.
    RESULTS IN PHYSICS, 2022, 38
  • [9] NUMERICAL INVESTIGATION OF DETERMINISTIC FORMULATIONS FOR STOCHASTIC COMPLEMENTARITY PROBLEMS
    Zhang, Yanfang
    PACIFIC JOURNAL OF OPTIMIZATION, 2011, 7 (02): : 317 - 337
  • [10] Deterministic versus stochastic trends: Detection and challenges
    Fatichi, S.
    Barbosa, S. M.
    Caporali, E.
    Silva, M. E.
    JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2009, 114