Fast modular multi-exponentiation using modified complex arithmetic

被引:8
|
作者
Wu, Chia-Long [1 ]
Lou, Der-Chyuan
Lai, Jui-Chang
Chang, Te-Jen
机构
[1] Chinese Air Force Inst Technol, Dept Aviat & Commun Engn, Kaohsiung 82042, Taiwan
[2] Natl Def Univ, Chung Cheng Inst Technol, Dept Elect Engn, Tao Yuan 33509, Taiwan
关键词
complex arithmetic; Hamming weight; signed-digit recoding; multi-exponentiation; public key cryptography;
D O I
10.1016/j.amc.2006.08.051
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Modular multi-exponentiation Pi M-n(i=1)i(E)i(modN) is a very important but time-consuming operation in many modern cryptosystems. In this paper, a fast modular multi-exponentiation is proposed utilizing the binary-like complex arithmetic method, complement representation method and canonical-signed-digit recoding technique. By performing complements and canonical-signed-digit recoding technique, the Hamming weight (number of 1's in the binary representation or number of non-zero digits in the binary signed-digit representations) of the exponents can be reduced. Based on these techniques, an algorithm with efficient modular multi-exponentiation is proposed. For modular multi-exponentiation, in average case, the proposed algorithm can reduce the number of modular multiplications (MMs) from 1.503k to 1.306k, where k is the bit-length of the exponent. We can therefore efficiently speed up the overall performance of the modular multi-exponentiation for cryptographic applications. (c) 2006 Elsevier Inc. All rights reserved.
引用
收藏
页码:1065 / 1074
页数:10
相关论文
共 50 条
  • [41] Modified Montgomery modular multiplication and RSA exponentiation techniques
    McIvor, C
    McLoone, M
    McCanny, JV
    IEE PROCEEDINGS-COMPUTERS AND DIGITAL TECHNIQUES, 2004, 151 (06): : 402 - 408
  • [42] Fast modular exponentiation and elliptic curve group operation in Maple
    Yan, S. Y.
    James, G.
    INTERNATIONAL JOURNAL OF MATHEMATICAL EDUCATION IN SCIENCE AND TECHNOLOGY, 2006, 37 (06) : 745 - +
  • [43] Fast batch modular exponentiation with common-multiplicand multiplication
    Seo, Jungjoo
    Park, Kunsoo
    INFORMATION PROCESSING LETTERS, 2018, 129 : 5 - 10
  • [44] MODULAR EXPONENTIATION USING RECURSIVE SUMS OF RESIDUES
    FINDLAY, PA
    JOHNSON, BA
    LECTURE NOTES IN COMPUTER SCIENCE, 1990, 435 : 371 - 386
  • [45] Efficient residue number system iterative modular multiplication algorithm for fast modular exponentiation
    Yang, J. -H.
    Chang, C. -C.
    IET COMPUTERS AND DIGITAL TECHNIQUES, 2008, 2 (01): : 1 - 5
  • [46] Multi-exponentiation algorithm based on binary GCD computation and its application to side-channel countermeasure
    Yen, Sung-Ming
    Chen, Chien-Ning
    Moon, SangJae
    JOURNAL OF CRYPTOGRAPHIC ENGINEERING, 2012, 2 (02) : 99 - 110
  • [47] Fast exponentiation using data compression
    Yacobi, Y
    SIAM JOURNAL ON COMPUTING, 1998, 28 (02) : 700 - 703
  • [48] Fast Exponentiation Using Split Exponents
    Cheon, Jung Hee
    Jarecki, Stanislaw
    Kwon, Taekyoung
    Lee, Mun-Kyu
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2011, 57 (03) : 1816 - 1826
  • [49] FAST QUANTUM MODULAR EXPONENTIATION ARCHITECTURE FOR SHOR'S FACTORING ALGORITHM
    Pavlidis, Archimedes
    Gizopoulos, Dimitris
    QUANTUM INFORMATION & COMPUTATION, 2014, 14 (7-8) : 649 - 682
  • [50] FAST SERVER-AIDED SECRET COMPUTATION PROTOCOLS FOR MODULAR EXPONENTIATION
    KAWAMURA, S
    SHIMBO, A
    IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, 1993, 11 (05) : 778 - 784