MULTIFREQUENCY MICROWAVE VEGETATION INDEXES FOR ESTIMATING VEGETATION BIOMASS

被引:0
|
作者
Santi, E. [1 ]
Paloscia, S. [1 ]
Pampaloni, P. [1 ]
机构
[1] IFAC CNR, Florence, Italy
关键词
Microwave Polarization Indices; Vegetation biomass; Artificial Neural Networks; AMSR2; Cosmo-Skymed; SOIL-MOISTURE; ALGORITHM; GROWTH; IMAGES;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The polarization capabilities in estimating vegetation biomass on both global and local scales by using passive and active microwave satellite data (AMSR-E/2, ENVISAT and COSMO-SkyMed) were investigated. Two algorithms that are based on Artificial Neural Networks (ANN) and are able to ingest data from different frequency channels have been implemented. The algorithm validation, carried out on the available experimental data, confirmed that the two polarizations and related indices can be legitimately used to produce vegetation maps on a global and local scale by separating at least 3-4 levels of biomass, without any need of further information from other sensors.
引用
收藏
页码:5186 / 5189
页数:4
相关论文
共 50 条
  • [21] Estimating Riparian Vegetation Geometry and Biomass from LiDAR Point Clouds
    Latella, Melissa
    Raimondo, Tommaso
    Camporeale, Carlo
    PROCEEDINGS OF THE 39TH IAHR WORLD CONGRESS, 2022, : 5448 - 5455
  • [22] A STUDY ON ESTIMATION OF ABOVEGROUND WET BIOMASS BASED ON THE MICROWAVE VEGETATION INDICES
    Chai, Linna
    Shi, J.
    Du, J.
    Tao, J.
    Jackson, T.
    O'neill, P. E.
    Zhang, L.
    Qu, Y.
    Wang, J.
    2009 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, VOLS 1-5, 2009, : 2226 - +
  • [23] Classification of short vegetation using multifrequency SAR
    Kouskoulas, Y
    Ulaby, FT
    Dobson, MC
    IGARSS '98 - 1998 INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, PROCEEDINGS VOLS 1-5: SENSING AND MANAGING THE ENVIRONMENT, 1998, : 103 - 105
  • [24] Vegetation Water Content Retrieval by Means of Multifrequency Microwave Acquisitions From AMSR2
    Santi, Emanuele
    Paloscia, Simonetta
    Pampaloni, Paolo
    Pettinato, Simone
    Nomaki, Tomoyuki
    Seki, Mieko
    Sekiya, Keiji
    Maeda, Takashi
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2017, 10 (09) : 3861 - 3873
  • [25] Mapping paddy biomass with multiple vegetation indexes by using multispectral remotely sensed image
    Gu, Xiaohe
    Wang, Yancang
    Song, Xiaoyu
    Xu, Xingang
    REMOTE SENSING FOR AGRICULTURE, ECOSYSTEMS, AND HYDROLOGY XVIII, 2016, 9998
  • [26] Sensor system for acquisition of vegetation indexes
    Silva, Thales M. de A.
    Valente, Domingos S. M.
    Pinto, Francisco de A. de C.
    de Queiroz, Daniel M.
    Santos, Nerilson T.
    REVISTA BRASILEIRA DE ENGENHARIA AGRICOLA E AMBIENTAL, 2021, 25 (04): : 264 - 269
  • [27] FUNCTIONAL EQUIVALENCE OF SPECTRAL VEGETATION INDEXES
    PERRY, CR
    LAUTENSCHLAGER, LF
    REMOTE SENSING OF ENVIRONMENT, 1984, 14 (1-3) : 169 - 182
  • [28] ATMOSPHERIC EFFECTS AND SPECTRAL VEGETATION INDEXES
    MYNENI, RB
    ASRAR, G
    REMOTE SENSING OF ENVIRONMENT, 1994, 47 (03) : 390 - 402
  • [29] Estimating Urban Vegetation Biomass from Sentinel-2A Image Data
    Li, Long
    Zhou, Xisheng
    Chen, Longqian
    Chen, Longgao
    Zhang, Yu
    Liu, Yunqiang
    FORESTS, 2020, 11 (02):
  • [30] Estimating the vegetation coverage with MPDI
    Wang, L
    Li, Z
    Chen, Q
    IGARSS 2005: IEEE International Geoscience and Remote Sensing Symposium, Vols 1-8, Proceedings, 2005, : 4512 - 4515