MULTIFREQUENCY MICROWAVE VEGETATION INDEXES FOR ESTIMATING VEGETATION BIOMASS

被引:0
|
作者
Santi, E. [1 ]
Paloscia, S. [1 ]
Pampaloni, P. [1 ]
机构
[1] IFAC CNR, Florence, Italy
关键词
Microwave Polarization Indices; Vegetation biomass; Artificial Neural Networks; AMSR2; Cosmo-Skymed; SOIL-MOISTURE; ALGORITHM; GROWTH; IMAGES;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The polarization capabilities in estimating vegetation biomass on both global and local scales by using passive and active microwave satellite data (AMSR-E/2, ENVISAT and COSMO-SkyMed) were investigated. Two algorithms that are based on Artificial Neural Networks (ANN) and are able to ingest data from different frequency channels have been implemented. The algorithm validation, carried out on the available experimental data, confirmed that the two polarizations and related indices can be legitimately used to produce vegetation maps on a global and local scale by separating at least 3-4 levels of biomass, without any need of further information from other sensors.
引用
收藏
页码:5186 / 5189
页数:4
相关论文
共 50 条
  • [1] MULTIFREQUENCY MICROWAVE EMISSION FOR ESTIMATING OPTICAL DEPTH AND VEGETATION BIOMASS
    Paloscia, S.
    Santi, E.
    Pampaloni, P.
    Pettinato, S.
    2016 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2016, : 5296 - 5299
  • [2] ESTIMATE OF VEGETATION DEGRADATION OF BIOMASS CAATINGA BY VEGETATION INDEXES
    Megna Francisco, Paulo Roberto
    Brito Chaves, Iede De
    Garofalo Chaves, Lucia Helena
    Viana De Lima, Eduardo Rodrigues
    POLEM!CA, 2013, 12 (02): : 306 - 321
  • [3] MICROWAVE VEGETATION INDEXES FOR DETECTING BIOMASS AND WATER CONDITIONS OF AGRICULTURAL CROPS
    PALOSCIA, S
    PAMPALONI, P
    REMOTE SENSING OF ENVIRONMENT, 1992, 40 (01) : 15 - 26
  • [4] Optical vegetation coverage is a better parameter for estimating vegetation biomass
    Liu, PJ
    Zhang, L
    Wang, RH
    Fan, ZL
    OPTICAL REMOTE SENSING FOR INDUSTRY AND ENVIRONMENTAL MONITORING, 1998, 3504 : 352 - +
  • [5] THE STUDY OF MULTIFREQUENCY MICROWAVE SATELLITE IMAGES FOR VEGETATION BIOMASS AND HUMIDITY OF THE AREA UNDER RAMSAR CONVENTION
    Dabrowska-Zielinska, Katarzyna
    Budzynska, M.
    Tomaszewska, M.
    Bartold, M.
    Gatkowska, M.
    2015 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2015, : 5198 - 5200
  • [6] Monitoring vegetation biomass with microwave sensors
    Macelloni, G
    Paloscia, S
    Pampaloni, P
    Ruisi, R
    REMOTE SENSING OF VEGETATION AND WATER, AND STANDARDIZATION OF REMOTE SENSING METHODS, 1997, 3107 : 26 - 32
  • [7] MULTIFREQUENCY SAR DATA FOR ESTIMATING SNOW, SOIL AND VEGETATION PARAMETERS
    Paloscia, S.
    Santi, E.
    Pettinato, S.
    Lapini, A.
    Fontanelli, G.
    Pilia, S.
    Baroni, F.
    Ramat, G.
    Santurri, L.
    Notarnicola, C.
    De Gregorio, L.
    Cuozzo, G.
    Tapete, D.
    Cigna, F.
    2022 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2022), 2022, : 5180 - 5183
  • [8] EVALUATING LANDSAT THEMATIC MAPPER DERIVED VEGETATION INDEXES FOR ESTIMATING ABOVEGROUND BIOMASS ON SEMIARID RANGELANDS
    ANDERSON, GL
    HANSON, JD
    HAAS, RH
    REMOTE SENSING OF ENVIRONMENT, 1993, 45 (02) : 165 - 175
  • [9] Microwave vegetation indexes derived from satellite microwave radiometers
    Shi, Jiancheng
    Jackson, T.
    Tao, Jing
    Du, Jingyang
    Bindlish, R.
    IGARSS: 2007 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, VOLS 1-12: SENSING AND UNDERSTANDING OUR PLANET, 2007, : 1412 - 1415
  • [10] Estimating foliar nitrogen in Eucalyptus using vegetation indexes
    Ramalho de Oliveira, Luiz Felipe
    Romarco de Oliveira, Marcio Leles
    Gomes, Francisco Sergio
    Santana, Reynaldo Campos
    SCIENTIA AGRICOLA, 2017, 74 (02): : 142 - 147