Experimental and theoretical aspects of biochar-supported nanoscale zero-valent iron activating H2O2 for ciprofloxacin removal from aqueous solution

被引:138
|
作者
Mao, Qiming [1 ]
Zhou, Yaoyu [1 ]
Yang, Yuan [1 ]
Zhang, Jiachao [1 ]
Liang, Lifen [2 ]
Wang, Hailong [3 ,4 ]
Luo, Shuang [1 ]
Luo, Lin [1 ]
Jeyakumar, Paramsothy [5 ]
Ok, Yong Sik [6 ,7 ]
Rizwan, Muhammad [8 ]
机构
[1] Hunan Agr Univ, Coll Resources & Environm, Changsha 410128, Hunan, Peoples R China
[2] Foshan Univ, Sch Environm & Chem Engn, Foshan 528000, Peoples R China
[3] Foshan Univ, Sch Environm & Chem Engn, Biochar Engn Technol Res Ctr Guangdong Prov, Foshan, Guangdong, Peoples R China
[4] Zhejiang A&F Univ, Sch Environm & Resource Sci, Key Lab Soil Contaminat Bioremediat Zhejiang Prov, Hangzhou 311300, Zhejiang, Peoples R China
[5] Massey Univ, Sch Agr & Environm, Environm Sci, Private Bag 11 222, Palmerston North 4442, New Zealand
[6] Korea Univ, OJERI, Korea Biochar Res Ctr, Seoul 02841, South Korea
[7] Korea Univ, Div Environm Sci & Ecol Engn, Seoul 02841, South Korea
[8] Govt Coll Univ, Dept Environm Sci & Engn, Allama lqbal Rd, Faisalabad 38000, Pakistan
关键词
Biochar-supported; Nanoscale zero-valent iron; Advanced oxidation processes; Density functional theory; IN-SITU REMEDIATION; OXIDATIVE-DEGRADATION; WASTE-WATER; OPERATING-CONDITIONS; MECHANISTIC INSIGHT; SLUDGE SYSTEM; FENTON; NZVI; PERSULFATE; KINETICS;
D O I
10.1016/j.jhazmat.2019.120848
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Ciprofloxacin has been frequently detected in water environment, and its removal has become a significant public concern. Biochar-supported nanoscale zero-valent iron (BC/nZVI) to activate hydrogen peroxide (H2O2) has many advantages on promoting the removal of organic contaminants. In this paper, the BC/nZVI activating H2O2 degradation of ciprofloxacin was systematically investigated by experimental and theoretical approaches. The morphologies and property analysis showed that nZVI particles distributed uniformly on the biochar surface, which mainly include -OH, > C=O and C-O-C and C-O groups. Different reaction conditions were compared to define the optimal conditions for ciprofloxacin removal in BC/nZVI/H(2)O(2 )system. More than 70% of ciprofloxacin was removed in the optimal conditions: acidic condition (pH 3 similar to 4), low doses of H2O2 (20 mM), and temperature of 298 K. The hydroxyl radical COH) oxidation was the primary pathway in BC/nZVI/H2O2 degradation of ciprofloxacin process. The theoretical calculation indicated that hydrogen atom abstraction (HAA) pathways were the dominant oxidation pathways contributing 92.3% in overall second-order rate constants (k) of center dot OH and ciprofloxacin. The current results are valuable to evaluate the application of BC/nZVI activating H2O2 degradation of ciprofloxacin and other fluoroquinolone antibiotics in water treatment plants.
引用
收藏
页数:9
相关论文
共 50 条
  • [41] Nanoscale Zero-Valent Iron Supported on Biochar: Characterization and Reactivity for Degradation of Acid Orange 7 from Aqueous Solution
    Guixiang Quan
    Wenji Sun
    Jinlong Yan
    Yeqing Lan
    Water, Air, & Soil Pollution, 2014, 225
  • [42] Immobilization of Cd and phosphorus utilization in eutrophic river sediments by biochar-supported nanoscale zero-valent iron
    Han, Baohong
    Song, Lei
    Li, Hao
    Song, Hongwei
    ENVIRONMENTAL TECHNOLOGY, 2021, 42 (26) : 4072 - 4078
  • [43] Enhanced immobilization of cadmium in contaminated paddy soil by biochar-supported sulfidized nanoscale zero-valent iron
    Yiqun Xu
    Shan Cao
    Xinyu Chen
    Jun Li
    Hongdou Liu
    Yang Gao
    Siqi Wen
    Jiaming Guo
    Xiaoyu Shi
    Wenjing Xue
    Journal of Soils and Sediments, 2024, 24 : 259 - 274
  • [44] Effective removal of Cd(ii) by sludge biochar supported nanoscale zero-valent iron from aqueous solution: characterization, adsorption properties and mechanism
    Dai, Liang
    Han, Tao
    Ma, Gui
    Tian, Xia
    Meng, Kai
    Lei, Zhenle
    Ren, Jun
    NEW JOURNAL OF CHEMISTRY, 2022, 46 (27) : 13184 - 13195
  • [45] Enhanced immobilization of cadmium in contaminated paddy soil by biochar-supported sulfidized nanoscale zero-valent iron
    Xu, Yiqun
    Cao, Shan
    Chen, Xinyu
    Li, Jun
    Liu, Hongdou
    Gao, Yang
    Wen, Siqi
    Guo, Jiaming
    Shi, Xiaoyu
    Xue, Wenjing
    JOURNAL OF SOILS AND SEDIMENTS, 2024, 24 (01) : 259 - 274
  • [46] Removal of Aqueous Cr(VI) by Tea Stalk Biochar Supported Nanoscale Zero-Valent Iron: Performance and Mechanism
    Mao, Yujie
    Tao, Yufang
    Zhang, Xulin
    Chu, Zhaopeng
    Zhang, Xinyi
    Huang, He
    WATER AIR AND SOIL POLLUTION, 2023, 234 (03):
  • [47] Removal of Aqueous Cr(VI) by Tea Stalk Biochar Supported Nanoscale Zero-Valent Iron: Performance and Mechanism
    Yujie Mao
    Yufang Tao
    Xulin Zhang
    Zhaopeng Chu
    Xinyi Zhang
    He Huang
    Water, Air, & Soil Pollution, 2023, 234
  • [48] Catalytic Degradation of Diatrizoate by Persulfate Activation with Peanut Shell Biochar-Supported Nano Zero-Valent Iron in Aqueous Solution
    Xu, Jian
    Zhang, Xueliang
    Sun, Cheng
    He, Huan
    Dai, Yuxuan
    Yang, Shaogui
    Lin, Yusuo
    Zhan, Xinhua
    Li, Qun
    Zhou, Yan
    INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH, 2018, 15 (09)
  • [49] Enhanced phenanthrene removal in aqueous solution using modified biochar supported nano zero-valent iron
    Wu, Hongwei
    Feng, Qiyan
    Yang, Hong
    Lu, Ping
    Gao, Bo
    Alansari, Amir
    ENVIRONMENTAL TECHNOLOGY, 2019, 40 (23) : 3114 - 3123
  • [50] Removal of U(VI) in Aqueous Solution by Nanoscale Zero-Valent Iron(nZVI)
    Li, Xiaoyan
    Zhang, Ming
    Liu, Yibao
    Li, Xun
    Liu, Yunhai
    Hua, Rong
    He, Caiting
    WATER QUALITY EXPOSURE AND HEALTH, 2013, 5 (01): : 31 - 40