Flavin-Containing Monooxygenase 3 (FMO3) Is Critical for Dioxin-Induced Reorganization of the Gut Microbiome and Host Insulin Sensitivity

被引:9
|
作者
Massey, William [1 ,2 ,3 ]
Osborn, Lucas J. [1 ,2 ,3 ]
Banerjee, Rakhee [1 ,2 ,3 ]
Horak, Anthony [1 ,2 ,3 ]
Fung, Kevin K. [1 ,2 ]
Orabi, Danny [1 ,2 ,3 ,4 ]
Chan, E. Ricky [5 ]
Sangwan, Naseer [2 ,6 ]
Wang, Zeneng [1 ,2 ,3 ]
Brown, J. Mark [1 ,2 ,3 ]
机构
[1] Cleveland Clin, Lerner Res Inst, Dept Cardiovasc & Metab Sci, Cleveland, OH 44195 USA
[2] Cleveland Clin, Lerner Res Inst, Ctr Microbiome & Human Hlth, Cleveland, OH 44195 USA
[3] Case Western Reserve Univ, Dept Mol Med, Cleveland, OH 44106 USA
[4] Cleveland Clin, Dept Gen Surg, Cleveland, OH 44195 USA
[5] Case Western Reserve Univ, Inst Computat Biol, Cleveland, OH 44106 USA
[6] Cleveland Clin, Lerner Res Inst, Microbial Sequencing & Analyt Core Facil, Cleveland, OH 44195 USA
基金
美国国家卫生研究院;
关键词
microbiome; diet; diabetes; pollutant; dioxin; TRIMETHYLAMINE-N-OXIDE; LIPID-METABOLISM; EXPOSURE; POLYMORPHISM; POLLUTANTS; INDUCTION; NUTRIENT; COMPLEX; GLUCOSE; OBESITY;
D O I
10.3390/metabo12040364
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Exposure to some environmental pollutants can have potent endocrine-disrupting effects, thereby promoting hormone imbalance and cardiometabolic diseases such as non-alcoholic fatty liver disease (NAFLD), diabetes, and cardiorenal diseases. Recent evidence also suggests that many environmental pollutants can reorganize the gut microbiome to potentially impact these diverse human diseases. 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is among the most potent endocrine-disrupting dioxin pollutants, yet our understanding of how TCDD impacts the gut microbiome and systemic metabolism is incompletely understood. Here, we show that TCDD exposure in mice profoundly stimulates the hepatic expression of flavin-containing monooxygenase 3 (Fmo3), which is a hepatic xenobiotic metabolizing enzyme that is also responsible for the production of the gut microbiome-associated metabolite trimethylamine N-oxide (TMAO). Interestingly, an enzymatic product of FMO3 (TMAO) has been associated with the same cardiometabolic diseases that these environmental pollutants promote. Therefore, here, we examined TCDD-induced alterations in the gut microbiome, host liver transcriptome, and glucose tolerance in Fmo3(+/+) and Fmo3(-/-) mice. Our results show that Fmo3 is a critical component of the transcriptional response to TCDD, impacting the gut microbiome, host liver transcriptome, and systemic glucose tolerance. Collectively, this work uncovers a previously underappreciated role for Fmo3 in integrating diet-pollutant-microbe-host interactions.
引用
收藏
页数:19
相关论文
共 50 条
  • [31] Phenotyping of flavin-containing monooxygenase using caffeine metabolism and genotyping of FMO3 gene in a Korean population
    Park, CS
    Chung, WG
    Kang, JH
    Roh, HK
    Lee, KH
    Cha, YN
    PHARMACOGENETICS, 1999, 9 (02): : 155 - 164
  • [32] Busulphan Metabolism Via Flavin-Containing Monooxygenase 3 (FMO3) Can Explain Several Interactions with Other Drugs
    El Serafi, Ibrahim
    Abedi-Valugerdi, Manuchehr
    Naughton, Sean
    Saghafian, Maryam
    Mattsson, Jonas
    Moshfegh, Ali
    Terelius, Ylva
    Potacova, Zuzana
    Hassan, Moustapha
    BLOOD, 2014, 124 (21)
  • [33] Mutations in the flavin-containing monooxygenase form 3 (FMO3) gene cause trimethylaminuria, fish odour syndrome.
    Akerman, BR
    Chow, L
    Forrest, S
    Youil, R
    Cashman, J
    Treacy, EP
    AMERICAN JOURNAL OF HUMAN GENETICS, 1997, 61 (04) : A53 - A53
  • [34] Ethnic differences in allelic frequency of two flavin-containing monooxygenase 3 (FMO3) polymorphisms:: linkage and effects on in vivo and in vitro FMO activities
    Park, CS
    Kang, JH
    Chung, WG
    Yi, HG
    Pie, JE
    Park, DK
    Hines, RN
    McCarver, DG
    Cha, YN
    PHARMACOGENETICS, 2002, 12 (01): : 77 - 80
  • [35] Tolerance to Acetaminophen Hepatotoxicity in the Mouse Model of Autoprotection Is Associated with Induction of Flavin-Containing Monooxygenase-3 (FMO3) in Hepatocytes
    Rudraiah, Swetha
    Rohrer, Philip R.
    Gurevich, Igor
    Goedken, Michael J.
    Rasmussen, Theodore
    Hines, Ronald N.
    Manautou, Jose E.
    TOXICOLOGICAL SCIENCES, 2014, 141 (01) : 263 - 277
  • [36] A series of simple detection systems for genetic variants of flavin-containing monooxygenase 3 (FMO3) with impaired function in Japanese subjects
    Shimizu, Makiko
    Mizugaki, Ami
    Koibuchi, Natsumi
    Sango, Haruna
    Uenuma, Yumi
    Yamazaki, Hiroshi
    DRUG METABOLISM AND PHARMACOKINETICS, 2021, 41
  • [37] Flavin-containing monooxygenase 3 (FMO3) role in busulphan metabolic pathway (vol 12, e0187294, 2017)
    El-Serafi, I
    Terelius, Y.
    Abedi-Valugerdi, M.
    Naughton, S.
    Saghafian, M.
    Moshfegh, A.
    PLOS ONE, 2017, 12 (12):
  • [38] Development of a physiologically based pharmacokinetic model to predict the effects of flavin-containing monooxygenase 3 (FMO3) polymorphisms on itopride exposure
    Zhou, Wangda
    Humphries, Helen
    Neuhoff, Sibylle
    Gardner, Iain
    Masson, Eric
    Al-Huniti, Nidal
    Zhou, Diansong
    BIOPHARMACEUTICS & DRUG DISPOSITION, 2017, 38 (06) : 389 - 393
  • [39] A family study of compound variants of flavin-containing monooxygenase 3 (FMO3) in Japanese subjects found by urinary phenotyping for trimethylaminuria
    Shimizu, Makiko
    Yamamoto, Akane
    Makiguchi, Miaki
    Shimamura, Erika
    Yokota, Yuka
    Harano, Mizuki
    Yamazaki, Hiroshi
    DRUG METABOLISM AND PHARMACOKINETICS, 2023, 50
  • [40] Discovery of novel flavin-containing monooxygenase 3 (FMO3) single nucleotide polymorphisms and functional analysis of upstream haplotype variants
    Koukouritaki, SB
    Poch, MT
    Cabacungan, ET
    McCarver, DG
    Hines, RN
    MOLECULAR PHARMACOLOGY, 2005, 68 (02) : 383 - 392