Electron energy-loss spectroscopy of strongly correlated systems in infinite dimensions

被引:2
|
作者
Craco, L
Laad, MS
机构
[1] Univ Estadual Campinas, Inst Fis Gleb Wataghin, BR-13083970 Campinas, SP, Brazil
[2] Univ Cologne, Inst Theoret Phys, D-50937 Cologne, Germany
关键词
D O I
10.1088/0953-8984/12/34/310
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
We study the electron energy-loss spectra of strongly correlated electronic systems doped away from half-filling using dynamical mean-field theory (d = infinity). The formalism can be used to study the loss spectra in the optical (q = 0) limit, where it is simply related to the optical response, and hence can be computed in an approximation-free way in d = oo dimensions. We apply the general formalism to the one-band Hubbard model away from n = 1, with inclusion of site-diagonal randomness to simulate effects of doping. The interplay between the coherence-induced plasmon feature and the incoherence-induced high-energy continuum is explained in terms of the evolution in the local spectral density upon hole doping. Inclusion of static disorder is shown to result in qualitative changes in the low-energy features, in particular to the overdamping of the plasmon feature, resulting in a completely incoherent response. The calculated lineshapes of electron energy-loss spectra are compared to the lineshapes of experimentally observed spectra for the normal state of the high-T-c materials near optimal doping and good qualitative agreement is found.
引用
收藏
页码:7647 / 7654
页数:8
相关论文
共 50 条
  • [21] Development of electron energy-loss spectroscopy for nanoscience
    Yuan, Jun
    Wang, Zhiwei
    Fu, Xin
    Xie, Lin
    Sun, Yuekui
    Gao, Shangpeng
    Jiang, Jun
    Hu, Xuerang
    Xu, Chen
    MICRON, 2008, 39 (06) : 658 - 665
  • [22] ELECTRON ENERGY-LOSS SPECTROSCOPY OF NAPHTHALENE VAPOR
    HUEBNER, RH
    MIELCZAR.SR
    KUYATT, CE
    CHEMICAL PHYSICS LETTERS, 1972, 16 (03) : 464 - &
  • [23] In Situ Electron Energy-Loss Spectroscopy in Liquids
    Holtz, Megan E.
    Yu, Yingchao
    Gao, Jie
    Abruna, Hector D.
    Muller, David A.
    MICROSCOPY AND MICROANALYSIS, 2013, 19 (04) : 1027 - 1035
  • [24] ELECTRON ENERGY-LOSS SPECTROSCOPY OF MOLYBDENUM DISILICIDE
    RASTOGI, RS
    VANKAR, VD
    BHATANAGAR, MC
    CHOPRA, KL
    JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A-VACUUM SURFACES AND FILMS, 1988, 6 (05): : 2957 - 2959
  • [25] Femtosecond MeV Electron Energy-Loss Spectroscopy
    Li, R. K.
    Wang, X. J.
    PHYSICAL REVIEW APPLIED, 2017, 8 (05):
  • [26] Atomic resolution electron energy-loss spectroscopy
    Klie, RF
    Arslan, I
    Browning, ND
    JOURNAL OF ELECTRON SPECTROSCOPY AND RELATED PHENOMENA, 2005, 143 (2-3) : 105 - 115
  • [27] ELECTRON ENERGY-LOSS SPECTROSCOPY ON METALLIC SUPERLATTICES
    BABIKER, M
    JOURNAL OF PHYSICS C-SOLID STATE PHYSICS, 1987, 20 (22): : 3321 - 3335
  • [28] Electron energy-loss spectroscopy of carbon onions
    Tomita, S
    Fujii, M
    Hayashi, S
    Yamamoto, K
    CHEMICAL PHYSICS LETTERS, 1999, 305 (3-4) : 225 - 229
  • [29] Electron Energy-Loss Spectroscopy of Coupled Plasmonic Systems: Beyond the Standard Electron Perspective
    Bernasconi, G. D.
    Flauraud, V.
    Alexander, D. T. L.
    Brugger, J.
    Martin, O. J. F.
    Butet, J.
    NANOIMAGING AND NANOSPECTROSCOPY IV, 2016, 9925
  • [30] ELECTRON ENERGY-LOSS SPECTROSCOPY (EELS) AND ELECTRON CHANNELING (ALCHEMI)
    BUSECK, PR
    SELF, P
    REVIEWS IN MINERALOGY, 1992, 27 : 141 - 180