PARABOLIC HIGGS BUNDLES, tt*CONNECTIONS AND OPERS

被引:0
|
作者
Alim, Murad [1 ]
Beck, Florian [1 ]
Fredrickson, Laura [2 ]
机构
[1] Univ Hamburg, Fachbereich Math, Bundesstr 55, D-20146 Hamburg, Germany
[2] Univ Oregon, Dept Math, Eugene, OR 97403 USA
关键词
Parabolic Higgs bundles; tt? equations; opers; mirror symmetry; quasi-modular forms; GEOMETRY; DUALITY; MODULI; CONSTRUCTION; MANIFOLDS; EQUATIONS;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The non-abelian Hodge correspondence identifies complex variations of Hodge struc-tures with certain Higgs bundles. In this work we analyze this relationship, and some of its rami-fications, when the variations of Hodge structures are determined by a (complete) one-dimensional family of compact Calabi-Yau manifolds. This setup enables us to apply techniques from mirror symmetry. For example, the corresponding Higgs bundles extend to parabolic Higgs bundles to the compactification of the base of the families. We determine the parabolic degrees of the underly-ing parabolic bundles in terms of the exponents of the Picard-Fuchs equations obtained from the variations of Hodge structure.Moreover, we prove in this setup that the flat non-abelian Hodge or tt*-connection is gauge equivalent to an oper which is determined by the corresponding Picard-Fuchs equations. This gauge equivalence puts forward a new derivation of non-linear differential relations between special functions on the moduli space which generalize Ramanujan's relations for the differential ring of quasi-modular forms.
引用
收藏
页码:455 / 506
页数:52
相关论文
共 50 条
  • [21] Topological mirror symmetry for parabolic Higgs bundles
    Gothen, Peter B.
    Oliveira, Andre G.
    JOURNAL OF GEOMETRY AND PHYSICS, 2019, 137 : 7 - 34
  • [22] Moduli of parabolic Higgs bundles and Atiyah algebroids
    Logares, Marina
    Martens, Johan
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2010, 649 : 89 - 116
  • [23] Nilpotent Higgs Bundles and Families of Flat Connections
    Sebastian Schulz
    Communications in Mathematical Physics, 2023, 403 : 877 - 915
  • [24] Nilpotent Higgs Bundles and Families of Flat Connections
    Schulz, Sebastian
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2023, 403 (02) : 877 - 915
  • [25] STABLE PARABOLIC BUNDLES AND FLAT SINGULAR CONNECTIONS
    BIQUARD, O
    BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE, 1991, 119 (02): : 231 - 257
  • [26] Topological invariants of parabolic G-Higgs bundles
    Georgios Kydonakis
    Hao Sun
    Lutian Zhao
    Mathematische Zeitschrift, 2021, 297 : 585 - 632
  • [27] Hyperpolygon spaces and moduli spaces of parabolic Higgs bundles
    Godinho, Leonor
    Mandini, Alessia
    ADVANCES IN MATHEMATICS, 2013, 244 : 465 - 532
  • [28] Parabolic Higgs bundles and Teichmuller spaces for punctured surfaces
    Biswas, I
    AresGastesi, P
    Govindarajan, S
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1997, 349 (04) : 1551 - 1560
  • [29] Generalizations of parabolic Higgs bundles, real structures, and integrability
    Levin, A.
    Olshanetsky, M.
    Zotov, A.
    JOURNAL OF MATHEMATICAL PHYSICS, 2021, 62 (10)
  • [30] Topological invariants of parabolic G-Higgs bundles
    Kydonakis, Georgios
    Sun, Hao
    Zhao, Lutian
    MATHEMATISCHE ZEITSCHRIFT, 2021, 297 (1-2) : 585 - 632