Schrodinger's cat for de Sitter spacetime

被引:16
|
作者
Foo, Joshua [1 ]
Mann, Robert B. [2 ,3 ]
Zych, Magdalena [4 ]
机构
[1] Univ Queensland, Ctr Quantum Computat & Commun Technol, Sch Math & Phys, St Lucia, Qld 4072, Australia
[2] Univ Waterloo, Dept Phys & Astron, Waterloo, ON N2L 3G1, Canada
[3] Perimeter Inst, 31 Caroline St, Waterloo, ON N2L 2Y5, Canada
[4] Univ Queensland, Ctr Engn Quantum Syst, Sch Math & Phys, St Lucia, Qld 4072, Australia
基金
加拿大自然科学与工程研究理事会;
关键词
quantum field theory; superposition; semiclassical gravity; detectors; de Sitter spacetime; phenomenology; QUANTUM; ENTANGLEMENT; GRAVITY;
D O I
10.1088/1361-6382/abf1c4
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Quantum gravity is expected to contain descriptions of semiclassical spacetime geometries in quantum superpositions. To date, no framework for modelling such superpositions has been devised. Here, we provide a new phenomenological description for the response of quantum probes (i.e. Unruh-deWitt detectors) on a spacetime manifold in quantum superposition. By introducing an additional control degree of freedom, one can assign a Hilbert space to the spacetime, allowing it to exist in a superposition of spatial or curvature states. Applying this approach to static de Sitter space, we discover scenarios in which the effects produced by the quantum spacetime are operationally indistinguishable from those induced by superpositions of Rindler trajectories in Minkowski spacetime. The distinguishability of such quantum spacetimes from superpositions of trajectories in flat space reduces to the equivalence or non-equivalence of the field correlations between the superposed amplitudes.
引用
收藏
页数:30
相关论文
共 50 条
  • [31] Lamb shift in de Sitter spacetime
    Zhou, Wenting
    Yu, Hongwei
    PHYSICAL REVIEW D, 2010, 82 (12):
  • [32] Renormalized entropies in a de Sitter spacetime
    Xiang, L
    Shen, YG
    GENERAL RELATIVITY AND GRAVITATION, 2005, 37 (07) : 1221 - 1231
  • [33] OPERATIONAL GEOMETRY ON DE SITTER SPACETIME
    Aguilar, P.
    Bonder, Y.
    Chryssomalakos, C.
    Sudarsky, D.
    MODERN PHYSICS LETTERS A, 2012, 27 (23)
  • [34] Inflation decay in de Sitter spacetime
    Boyanovsky, D
    Holman, R
    Kumar, SP
    PHYSICAL REVIEW D, 1997, 56 (04) : 1958 - 1972
  • [35] Anisotropic generalizations of de Sitter spacetime
    Giambò, R
    CLASSICAL AND QUANTUM GRAVITY, 2002, 19 (16) : 4399 - 4404
  • [36] Stochastic Tunneling in de Sitter Spacetime
    Miyachi, Taiga
    Soda, Jiro
    Tokuda, Junsei
    UNIVERSE, 2024, 10 (07)
  • [37] On the Uniqueness of Schwarzschild–de Sitter Spacetime
    Stefano Borghini
    Piotr T. Chruściel
    Lorenzo Mazzieri
    Archive for Rational Mechanics and Analysis, 2023, 247
  • [38] On Beltrami model of de Sitter spacetime
    Guo, HY
    Huang, CG
    Xu, Z
    Zhou, B
    MODERN PHYSICS LETTERS A, 2004, 19 (22) : 1701 - 1709
  • [39] Temperature at horizon in de Sitter spacetime
    Guo, HY
    Huang, CG
    Zhou, B
    EUROPHYSICS LETTERS, 2005, 72 (06): : 1045 - 1051
  • [40] Discrete Symmetries and de Sitter Spacetime
    Cotaescu, Ion I.
    Pascu, Gabriel
    TIM 2013 PHYSICS CONFERENCE, 2014, 1634 : 30 - 34