Performance analysis of a novel thermal management system with composite phase change material for a lithium-ion battery pack

被引:85
|
作者
Wang, Xiaoming [1 ]
Xie, Yongqi [1 ]
Day, Rodney [2 ]
Wu, Hongwei [2 ]
Hu, Zhongliang
Zhu, Jianqin [4 ]
Wen, Dongsheng [1 ,3 ]
机构
[1] Beihang Univ, Sch Aeronaut Sci & Engn, Beijing 100191, Peoples R China
[2] Univ Hertfordshire, Sch Engn & Technol, Hatfield AL10 9AB, Herts, England
[3] Univ Leeds, Sch Chem & Proc Engn, Leeds LS2 9JT, W Yorkshire, England
[4] Beihang Univ, Sch Energy & Power Engn, Natl Key Lab Sci & Technol Aeroengine Aerothermod, Beijing 100191, Peoples R China
关键词
Lithium-ion battery; Thermal management system; Phase change material; Metal foam; Charge and discharge cycle; ELECTRIC VEHICLE APPLICATIONS; POWER BATTERY; ENERGY-STORAGE; MODULE; OPTIMIZATION; PARAFFIN; SAFETY;
D O I
10.1016/j.energy.2018.05.104
中图分类号
O414.1 [热力学];
学科分类号
摘要
A novel passive thermal management system (TMS) based on copper foam and paraffin composite phase change material (PCM) was designed for a lithium-ion battery pack in this work, where the phase change storage energy unit (PCSEU) was indirectly in contact with the cell. A combined experimental and numerical study was performed to investigate the thermal performance of the battery pack with the novel TMS and air cooling system (ACS). The effects of the PCSEU casing, composite PCM effective thermal conductivity, geometric structure parameters of the TMS, charge discharge rate and ambient temperature were systematically evaluated, as well as the battery thermal behaviors during charge and discharge cycles. Results showed that the passive TMS could keep the battery temperature in a desirable range even under 4C discharge rate at 42 degrees C and the PCSEU casing could remarkably improve its heat absorption efficiency. The thickness of the heat conducting sheet demonstrated the greatest impact on the battery temperature. Pure ACS with an air flow rate <= 200 m m(3)/h could not meet the battery cooling demands. The passive TMS could achieve up to 3 cycles of 4C charge and discharge at 35 degrees C while keeping the maximum temperature of the battery pack below 52 degrees C. (C) 2018 Elsevier Ltd. All rights reserved.
引用
收藏
页码:154 / 168
页数:15
相关论文
共 50 条
  • [21] Role of foam anisotropy used in the phase-change composite material for the hybrid thermal management system of lithium-ion battery
    Bamdezh, M. A.
    Molaeimanesh, G. R.
    Zanganeh, S.
    JOURNAL OF ENERGY STORAGE, 2020, 32 (32):
  • [22] Experimental and numerical study of lithium-ion battery thermal management system using composite phase change material and liquid cooling
    Xin, Qianqian
    Yang, Tianqi
    Zhang, Hengyun
    Yang, Jiaxing
    Zeng, Juan
    Xiao, Jinsheng
    JOURNAL OF ENERGY STORAGE, 2023, 71
  • [23] Thermal Management Optimization of Prismatic Lithium-Ion Battery Using Phase Change Material
    Ponangi, Babu Rao
    Shreyas, S.
    Shashwath, D. S.
    SAE INTERNATIONAL JOURNAL OF PASSENGER VEHICLE SYSTEMS, 2022, 15 (02): : 133 - 147
  • [24] Low-cost numerical lumped modelling of lithium-ion battery pack with phase change material and liquid cooling thermal management system
    Lebrouhi, B. E.
    Lamrani, B.
    Ouassaid, M.
    Abd-Lefdil, M.
    Maaroufi, M.
    Kousksou, T.
    JOURNAL OF ENERGY STORAGE, 2022, 54
  • [25] Thermal management of a prismatic lithium battery pack with organic phase change material
    Alqaed, Saeed
    Mustafa, Jawed
    Almehmadi, Fahad Awjah
    Sharifpur, Mohsen
    JOURNAL OF THE TAIWAN INSTITUTE OF CHEMICAL ENGINEERS, 2023, 148
  • [26] Thermal management of Lithium-ion battery pack through the application of flexible form-stable composite phase change materials
    Huang, Qiqiu
    Li, Xinxi
    Zhang, Guoqing
    Deng, Jian
    Wang, Changhong
    APPLIED THERMAL ENGINEERING, 2021, 183
  • [27] Thermal performance analysis of a lithium-ion cell using the novel fins and the phase change material
    Kumar, Ajay
    Naik, Mohith
    Salunkhe, Pramod B.
    PROCESS SAFETY AND ENVIRONMENTAL PROTECTION, 2024, 190 : 535 - 544
  • [28] A novel thermal management system combining phase change material with wavy cold plate for lithium-ion battery pack under high ambient temperature and rapid discharging
    Zheng, Jinquan
    Chang, Long
    Mu, Mingfei
    Li, Jianbo
    Li, Changlong
    Ma, Chen
    Du, Henghui
    APPLIED THERMAL ENGINEERING, 2024, 245
  • [29] A comprehensive review of composite phase change material based thermal management system for lithium-ion batteries
    Zhao, Yanqi
    Zou, Boyang
    Zhang, Tongtong
    Jiang, Zhu
    Ding, Jianning
    Ding, Yulong
    RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2022, 167
  • [30] Effect of composite cooling strategy including phase change material and liquid cooling on the thermal safety performance of a lithium-ion battery pack under thermal runaway propagation
    Xiao, Hanxu
    E, Jiaqiang
    Tian, Sicheng
    Huang, Yuxin
    Song, Xinyu
    Energy, 2024, 295