Subwavelength focusing by optical surface transformation

被引:6
|
作者
Sun, Fei [1 ,2 ,3 ]
He, Sailing [1 ,2 ,3 ,4 ]
机构
[1] Zhejiang Univ, Ctr Opt & Electromagnet Res, State Key Lab Modern Opt Instrumentat, JORCEP, Hangzhou 310058, Zhejiang, Peoples R China
[2] Zhejiang Univ, Natl Engn Res Ctr Opt Instrumentat, Hangzhou 310058, Zhejiang, Peoples R China
[3] Zhejiang Univ, Zhejiang Prov Key Lab Sensing Technol, Hangzhou 310058, Zhejiang, Peoples R China
[4] Royal Inst Technol KTH, Sch Elect Engn, Dept Electromagnet Engn, S-10044 Stockholm, Sweden
基金
中国国家自然科学基金;
关键词
Optical surface transformation; Sub-wavelength focusing; Optic-null medium; NULL MEDIUM; EXTRAORDINARY TRANSMISSION; NEGATIVE-INDEX; LIGHT; CONCENTRATORS; METAMATERIAL; DIFFRACTION; REALIZATION; PLASMONICS; DESIGN;
D O I
10.1016/j.optcom.2018.06.029
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We propose a novel beam-compression device to achieve sub-wavelength focusing (SF) by optical surface transformation (a new theoretical branch derived from transformation optics). When a Gaussian beam is incident on the input surface of our device, we can obtain a sub-wavelength focused spot at the output surface of the compression device. The focused mode can still propagate to the far-field and keep very good directivity as incident Gaussian beam. The size of the sub-wavelength beam can be tuned by changing the size of the output surface. We only need one kind of homogeneous anisotropic medium, the optic-null medium (ONM), to realize the proposed beam-compression device. After some simplifications, we design a layered structure of two isotropic homogeneous media to realize the device. Numerical simulations verify the performance of our beam-compression device.
引用
收藏
页码:139 / 146
页数:8
相关论文
共 50 条
  • [21] Transformation of optical radiation into subwavelength fields in mesoscopic semiconductor waveguides
    Lebedev, V. S.
    Kuznetsova, T. I.
    Vitukhnovskii, A. G.
    DOKLADY PHYSICS, 2006, 51 (10) : 542 - 546
  • [22] Transformation of optical radiation into subwavelength fields in mesoscopic semiconductor waveguides
    V. S. Lebedev
    T. I. Kuznetsova
    A. G. Vitukhnovskiĭ
    Doklady Physics, 2006, 51 : 542 - 546
  • [23] Subwavelength focusing of laser radiation
    Zuev, VS
    Frantsesson, AV
    JETP LETTERS, 2000, 72 (03) : 115 - 118
  • [24] Subwavelength focusing by a microsphere array
    Wang, Tingting
    Kuang, Cuifang
    Hao, Xiang
    Liu, Xu
    JOURNAL OF OPTICS, 2011, 13 (03)
  • [25] Subwavelength focusing of laser radiation
    V. S. Zuev
    A. V. Frantsesson
    Journal of Experimental and Theoretical Physics Letters, 2000, 72 : 115 - 118
  • [26] Oblique launching of optical surface waves by a subwavelength slit
    Nikitin, A. Yu.
    Garcia-Vidal, F. J.
    Martin-Moreno, L.
    PHYSICAL REVIEW B, 2011, 83 (15):
  • [27] Subwavelength focusing and steering of spoof acoustic surface waves with aperiodic waveguide arrays
    Xie, Peng-Xiang
    Sheng, Zong-Qiang
    Huang, Ze-Xin
    Ping-Hu
    Wu, Hong-Wei
    APPLIED PHYSICS LETTERS, 2023, 122 (22)
  • [28] Beam focusing through a tapered subwavelength aperture surrounded by dielectric surface gratings
    Zheng, Gai-Ge
    Shi, Lin-Xing
    Wang, Hai-Lin
    Li, Xiang-Yin
    OPTICS COMMUNICATIONS, 2009, 282 (20) : 4146 - 4151
  • [29] Optical surface analysis: Focusing on the fundamentals
    Malburg, Mark
    Zecchino, Mike
    1600, Laurin Publishing Co. Inc. (55): : 44 - 49
  • [30] Deterministic design of focusing apodized subwavelength grating coupler based on weak form and transformation optics
    Li, Shuyi
    Cai, Lifeng
    Gao, Dingshan
    Dong, Jianji
    Hou, Jin
    Yang, Chunyong
    Chen, Shaoping
    Zhang, Xinliang
    OPTICS EXPRESS, 2020, 28 (23): : 35395 - 35412