Subwavelength focusing by optical surface transformation

被引:6
|
作者
Sun, Fei [1 ,2 ,3 ]
He, Sailing [1 ,2 ,3 ,4 ]
机构
[1] Zhejiang Univ, Ctr Opt & Electromagnet Res, State Key Lab Modern Opt Instrumentat, JORCEP, Hangzhou 310058, Zhejiang, Peoples R China
[2] Zhejiang Univ, Natl Engn Res Ctr Opt Instrumentat, Hangzhou 310058, Zhejiang, Peoples R China
[3] Zhejiang Univ, Zhejiang Prov Key Lab Sensing Technol, Hangzhou 310058, Zhejiang, Peoples R China
[4] Royal Inst Technol KTH, Sch Elect Engn, Dept Electromagnet Engn, S-10044 Stockholm, Sweden
基金
中国国家自然科学基金;
关键词
Optical surface transformation; Sub-wavelength focusing; Optic-null medium; NULL MEDIUM; EXTRAORDINARY TRANSMISSION; NEGATIVE-INDEX; LIGHT; CONCENTRATORS; METAMATERIAL; DIFFRACTION; REALIZATION; PLASMONICS; DESIGN;
D O I
10.1016/j.optcom.2018.06.029
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We propose a novel beam-compression device to achieve sub-wavelength focusing (SF) by optical surface transformation (a new theoretical branch derived from transformation optics). When a Gaussian beam is incident on the input surface of our device, we can obtain a sub-wavelength focused spot at the output surface of the compression device. The focused mode can still propagate to the far-field and keep very good directivity as incident Gaussian beam. The size of the sub-wavelength beam can be tuned by changing the size of the output surface. We only need one kind of homogeneous anisotropic medium, the optic-null medium (ONM), to realize the proposed beam-compression device. After some simplifications, we design a layered structure of two isotropic homogeneous media to realize the device. Numerical simulations verify the performance of our beam-compression device.
引用
收藏
页码:139 / 146
页数:8
相关论文
共 50 条
  • [1] Subwavelength Focusing of Bloch Surface Waves
    Kim, Myun-Sik
    Lahijani, Babak Vosoughi
    Descharmes, Nicolas
    Straubel, Jakob
    Negredo, Fernando
    Rockstuhl, Carsten
    Hayrinen, Markus
    Kuittinen, Markku
    Roussey, Matthieu
    Herzig, Hans Peter
    ACS PHOTONICS, 2017, 4 (06): : 1477 - 1483
  • [2] Subwavelength focusing and guiding of surface plasmons
    Yin, LL
    Vlasko-Vlasov, VK
    Pearson, J
    Hiller, JM
    Hua, J
    Welp, U
    Brown, DE
    Kimball, CW
    NANO LETTERS, 2005, 5 (07) : 1399 - 1402
  • [3] Subwavelength focusing and imaging by a multimode optical waveguide
    Ao, XY
    He, SL
    OPTICS LETTERS, 2004, 29 (24) : 2864 - 2866
  • [4] Subwavelength focusing of azimuthally polarized optical vortex
    Stafeev, S. S.
    Nalimov, A. G.
    O'Faolain, L.
    Kotlyar, M. V.
    Kotlyar, V. V.
    OPTICAL TECHNOLOGIES FOR TELECOMMUNICATIONS 2017, 2018, 10774
  • [5] Robust subwavelength focusing of surface plasmons on graphene
    Long, Yang
    Zhang, Zhengren
    Su, Xiaopeng
    EPL, 2016, 116 (03)
  • [6] Far field subwavelength focusing using optical eigenmodes
    Baumgartl, Joerg
    Kosmeier, Sebastian
    Mazilu, Michael
    Rogers, Edward T. F.
    Zheludev, Nikolay I.
    Dholakia, Kishan
    APPLIED PHYSICS LETTERS, 2011, 98 (18)
  • [7] Subwavelength Focusing using Radiationless Inteference at Optical Wavelengths
    Gordon, R.
    METAMATERIALS IV, 2009, 7353
  • [8] Optical beam focusing by a single subwavelength metal slit surrounded by chirped dielectric surface gratings
    Kim, Seyoon
    Lim, Yongjun
    Kim, Hwi
    Park, Junghyun
    Lee, Byoungho
    APPLIED PHYSICS LETTERS, 2008, 92 (01)
  • [9] Subwavelength Focusing In The Infrared Range Using A Meta Surface
    Abdel-Galil, Manar
    Ismail, Yehea
    Swillam, Mohamed
    2017 INTERNATIONAL APPLIED COMPUTATIONAL ELECTROMAGNETICS SOCIETY SYMPOSIUM - ITALY (ACES), 2017,
  • [10] Focusing light with a single subwavelength aperture flanked by surface corrugations
    García-Vidal, FJ
    Martín-Moreno, L
    Lezec, HJ
    Ebbesen, TW
    APPLIED PHYSICS LETTERS, 2003, 83 (22) : 4500 - 4502