Negative electron affinity group III-nitride photocathode demonstrated as a high performance electron source

被引:47
|
作者
Machuca, F [1 ]
Liu, Z
Maldonado, JR
Coyle, ST
机构
[1] Stanford Univ, Dept Elect Engn, Stanford, CA 94305 USA
[2] ETEC Syst Inc, Hayward, CA 94545 USA
[3] Stanford Univ, Dept Phys, Stanford, CA 94305 USA
[4] Stanford Univ, Stanford Synchrotron Radiat Lab, Stanford, CA 94305 USA
来源
关键词
D O I
10.1116/1.1813453
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The need for a high performance (low energy spread < 0.5 eV. long lifetime > 3 months per spot, emission stability < 1% /h) electron source continues as part of the development of new e-beam writing and inspection tools. We present measurements from a group III-nitride (indium gallium nitride) photocathode in a demountable vacuum system to measure energy spread. lifetime. and preliminary blanking effects. We show the results of cathodes operating in ultrahigh vacuum (UHV), high vacuum (HV), and oxygen-rich backpressures. Our results show InGaN has a longitudinal energy spread of <300 meV in reflection mode, flat lifetimes of 60 h per illuminated spot where the yield changes by <10%, and stable emission with typical recoveries within 99% of original photocurrent for all blanking periods and vacuum conditions tested (0.5 to 10 min periods). (C) 2004 American Vacuum Society.
引用
收藏
页码:3565 / 3569
页数:5
相关论文
共 50 条
  • [31] III-Nitride Deep UV LED Without Electron Blocking Layer
    Ren, Zhongjie
    Lu, Yi
    Yao, Hsin-Hung
    Sun, Haiding
    Liao, Che-Hao
    Dai, Jiangnan
    Chen, Changqing
    Ryou, Jae-Hyun
    Yan, Jianchang
    Wang, Junxi
    Li, Jinmin
    Li, Xiaohang
    IEEE PHOTONICS JOURNAL, 2019, 11 (02):
  • [32] Electrostatically Generated Air-Stable Negative Electron Affinity Silicon Photocathode
    Priyoti, Anika Tabassum
    Ahsan, Ragib
    Chae, Hyun Uk
    Das, Subrata
    Sanchez Vazquez, Juan
    Wu, Zezhi
    Kim, Hee Gon
    Yu, Yiyan
    Kapadia, Rehan
    ACS PHOTONICS, 2023, 10 (12) : 4501 - 4508
  • [33] Lifetime and reliability results for a negative electron affinity photocathode in a demountable vacuum system
    Sen, P
    Pickard, DS
    Schneider, JE
    McCord, MA
    Pease, RF
    Baum, AW
    Costello, KA
    JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 1998, 16 (06): : 3380 - 3384
  • [34] Spectral response variation of a negative-electron-affinity photocathode in the preparation process
    Liu, Lei
    Du, Yujie
    Chang, Benkang
    Qian, Yunsheng
    APPLIED OPTICS, 2006, 45 (24) : 6094 - 6098
  • [35] Atomic hydrogen cleaning of InP(100) for preparation of a negative electron affinity photocathode
    Elamrawi, KA
    Hafez, MA
    Elsayed-Ali, HE
    JOURNAL OF APPLIED PHYSICS, 1998, 84 (08) : 4568 - 4572
  • [36] Negative-electron-affinity diamondoid monolayers as high-brilliance source for ultrashort electron pulses
    Roth, S.
    Leuenberger, D.
    Osterwalder, J.
    Dahl, J. E.
    Carlson, R. M. K.
    Tkachenko, B. A.
    Fokin, A. A.
    Schreiner, P. R.
    Hengsberger, M.
    CHEMICAL PHYSICS LETTERS, 2010, 495 (1-3) : 102 - 108
  • [37] Study on photoemission mechanism for negative electron affinity GaN vacuum electron source
    Qiao, Jianliang
    Chang, Benkang
    Qian, Yunsheng
    Wang, Xiaohui
    Li, Biao
    Fu, Xiaoqian
    PHYSICA STATUS SOLIDI C: CURRENT TOPICS IN SOLID STATE PHYSICS, VOL 9, NO 1, 2012, 9 (01):
  • [38] Progress in study of negative electron affinity GaN vacuum surface electron source
    Qiao Jian-Liang
    Chang Ben-Kang
    Qian Yun-Sheng
    Gao Pin
    Wang Xiao-Hui
    Xu Yuan
    ACTA PHYSICA SINICA, 2011, 60 (10)
  • [39] Recent tests of negative electron affinity photocathodes as source for electron lithography and microscopy
    Arcuni, P
    Presley, S
    Aebi, V
    Spicer, WE
    JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 2001, 19 (06): : 2585 - 2590
  • [40] III-nitride vertical hot electron transistor with polarization doping and collimated injection
    Daulton, J. W.
    Molnar, R. J.
    Brinkerhoff, J. A.
    Hollis, M. A.
    Zaslavsky, A.
    APPLIED PHYSICS LETTERS, 2022, 121 (22)