Theoretical Insights on Bandgap Engineering for Nanoribbons of the 2D Materials Family with Co-Adatoms

被引:6
|
作者
Sangani, Keyur [1 ]
Pandya, Ankur [2 ]
Jha, Prafulla K. [3 ]
机构
[1] Nirma Univ, Inst Sci, Ahmadabad 382481, Gujarat, India
[2] Nirma Univ, Inst Technol, Ahmadabad 382481, Gujarat, India
[3] Maharaja Sayajirao Univ Baroda, Fac Sci, Dept Phys, Vadodara 390002, India
关键词
Bandgap; resistivity; graphene; h-BN; silicene; germanene; stanene; phosphorene; acoustical deformation potential scattering; GRAPHENE; TRANSPORT; BORON; SCATTERING; SILICENE; GAPS;
D O I
10.1007/s11664-021-09039-8
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The bandgap tuning of two-dimensional (2D) materials is a vital step for their potential applications in the realm of nanoelectronics, optoelectronics, and spintronics. In this context, the bandgap of cobalt (Co)-adsorbed nanoribbons of novel 2D materials (for instance, graphene (GNR), h-BN (BNNR), silicene (SiNR), germanene (GeNR), stanene (SnNR), and phosphorene (PNR)) is investigated under the effect of a transverse magnetic field via an acoustical deformation potential (ADP) scattering mechanism. Bandgaps ranging from 1.10 eV to 1.42 eV were obtained for Co-adsorbed 2D nanoribbons, which display semiconducting behaviour. In addition to that, investigating the impact of temperature on the bandgap revealed an anomalous temperature dependence of the bandgap. The outcomes of the present work would be advantageous for developing transition metal (TM)-adsorbed-nanoribbon-based nanoelectronic and spintronic devices, wherein controlling their bandgap by employing a magnetic field is a useful tool for advancing nanoribbon-based technology.
引用
收藏
页码:5244 / 5249
页数:6
相关论文
共 50 条
  • [31] Experimental nanomechanics of 2D materials for strain engineering
    Han, Ying
    Zhou, Jingzhuo
    Wang, Heyi
    Gao, Libo
    Feng, Shizhe
    Cao, Ke
    Xu, Zhiping
    Lu, Yang
    APPLIED NANOSCIENCE, 2021, 11 (04) : 1075 - 1091
  • [32] Experimental nanomechanics of 2D materials for strain engineering
    Ying Han
    Jingzhuo Zhou
    Heyi Wang
    Libo Gao
    Shizhe Feng
    Ke Cao
    Zhiping Xu
    Yang Lu
    Applied Nanoscience, 2021, 11 : 1075 - 1091
  • [33] 2D materials: molecular design and engineering perspectives
    Jariwala, Deep
    Hersam, Mark C.
    MOLECULAR SYSTEMS DESIGN & ENGINEERING, 2019, 4 (03): : 469 - 470
  • [34] Electronic Band Engineering in Elemental 2D Materials
    Meng, Ziyuan
    Zhuang, Jincheng
    Xu, Xun
    Hao, Weichang
    Dou, Shi Xue
    Du, Yi
    ADVANCED MATERIALS INTERFACES, 2018, 5 (20):
  • [35] Strain of 2D materials via substrate engineering
    Yangwu Wu
    Lu Wang
    Huimin Li
    Qizhi Dong
    Song Liu
    Chinese Chemical Letters, 2022, 33 (01) : 153 - 162
  • [36] Interface engineering in 2D materials for SERS sensing
    Zhao, Shaoguang
    Zhao, Yu
    Tao, Li
    FRONTIERS IN MATERIALS, 2023, 10
  • [37] Engineering symmetry breaking in 2D layered materials
    Du, Luojun
    Hasan, Tawfique
    Castellanos-Gomez, Andres
    Liu, Gui-Bin
    Yao, Yugui
    Lau, Chun Ning
    Sun, Zhipei
    NATURE REVIEWS PHYSICS, 2021, 3 (03) : 193 - 206
  • [38] Engineering symmetry breaking in 2D layered materials
    Luojun Du
    Tawfique Hasan
    Andres Castellanos-Gomez
    Gui-Bin Liu
    Yugui Yao
    Chun Ning Lau
    Zhipei Sun
    Nature Reviews Physics, 2021, 3 : 193 - 206
  • [39] Manipulating 2D Materials through Strain Engineering
    Yu, Xiangxiang
    Peng, Zhuiri
    Xu, Langlang
    Shi, Wenhao
    Li, Zheng
    Meng, Xiaohan
    He, Xiao
    Wang, Zhen
    Duan, Shikun
    Tong, Lei
    Huang, Xinyu
    Miao, Xiangshui
    Hu, Weida
    Ye, Lei
    SMALL, 2024,
  • [40] Mechanochemical engineering of 2D materials for multiscale biointerfaces
    Machnicki, Catherine E.
    Fu, Fanfan
    Jing, Lin
    Chen, Po-Yen
    Wong, Ian Y.
    JOURNAL OF MATERIALS CHEMISTRY B, 2019, 7 (41) : 6293 - 6309