Nonperturbative topological current in Weyl and Dirac semimetals in laser fields

被引:18
|
作者
Dantas, Renato M. A. [1 ,2 ]
Wang, Zhe [3 ,4 ]
Surowka, Piotr [1 ,2 ,5 ]
Oka, Takashi [1 ,6 ,7 ]
机构
[1] Max Planck Inst Phys Komplexer Syst, Nothnitzer Str 38, D-01187 Dresden, Germany
[2] Wurzburg Dresden Cluster Excellence Ctqmat, D-01187 Dresden, Germany
[3] Univ Cologne, Inst Phys 2, D-50937 Cologne, Germany
[4] Tech Univ Dortmund, Fak Phys, D-44227 Dortmund, Germany
[5] Wroclaw Univ Sci & Technol, Dept Theoret Phys, PL-50370 Wroclaw, Poland
[6] Univ Tokyo, Inst Solid State Phys, Kashiwa, Chiba 2778581, Japan
[7] Max Planck Inst Chem Phys Solids, D-01187 Dresden, Germany
关键词
NEUTRINOS; ABSENCE; LATTICE;
D O I
10.1103/PhysRevB.103.L201105
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We study nonperturbatively the anomalous Hall current and its high harmonics generated in Weyl and Dirac semimetals by strong elliptically polarized laser fields in the context of kinetic theory. We find a crossover between perturbative and nonperturbative regimes characterized by the electric field strength epsilon* = mu omega/2evF (omega, laser frequency; mu, Fermi energy; v(F), Fermi velocity). In the perturbative regime, the anomalous Hall current depends quadratically on the field strength (epsilon), whereas the higher-order corrections, as well as high harmonics, vanish at zero temperature. In the nonperturbative regime, the anomalous Hall current saturates and decays as (ln epsilon)/epsilon, while even-order high harmonics are generated when in-plane rotational symmetry is broken. Based on the analytical solution of the Boltzmann equation, we reveal the topological origin of the sharp crossover: the Weyl monopole stays inside or moves outside of the Fermi sphere, respectively, during its fictitious motion in the perturbative or nonperturbative regimes. Our findings establish a nonlinear response intrinsically connected to topology, characteristic of Weyl and Dirac semimetals.
引用
收藏
页数:6
相关论文
共 50 条
  • [41] Topological hinge modes in Dirac semimetals
    Zeng, Xu-Tao
    Chen, Ziyu
    Chen, Cong
    Liu, Bin-Bin
    Sheng, Xian-Lei
    Yang, Shengyuan A.
    FRONTIERS OF PHYSICS, 2023, 18 (01)
  • [42] Elastic Gauge Fields in Weyl Semimetals
    Cortijo, Alberto
    Ferreiros, Yago
    Landsteiner, Karl
    Vozmediano, Maria A. H.
    PHYSICAL REVIEW LETTERS, 2015, 115 (17)
  • [43] Dissipation of Topological Charge in Plasmonic Weyl Semimetals
    Shastri, Kunal
    Monticone, Francesco
    2020 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2020,
  • [44] Topological response in Weyl semimetals and the chiral anomaly
    Zyuzin, A. A.
    Burkov, A. A.
    PHYSICAL REVIEW B, 2012, 86 (11):
  • [45] Weyl semimetals from noncentrosymmetric topological insulators
    Liu, Jianpeng
    Vanderbilt, David
    PHYSICAL REVIEW B, 2014, 90 (15)
  • [46] Surface plasmon polaritons in topological Weyl semimetals
    Hofmann, Johannes
    Das Sarma, Sankar
    PHYSICAL REVIEW B, 2016, 93 (24)
  • [47] Circular dichroism in nonlinear topological Weyl semimetals
    Alomeare, Helda
    Nutku, Ferhat
    Sarisaman, Mustafa
    JOURNAL OF OPTICS, 2024, 26 (06)
  • [48] Thermoelectric Relations in the Conformal Limit in Dirac and Weyl Semimetals
    Arjona, Vicente
    Borge, Juan
    Vozmediano, Maria A. H.
    SYMMETRY-BASEL, 2020, 12 (05):
  • [49] Waveguide modes in Weyl semimetals with tilted dirac cones
    Halterman, Klaus
    Alidoust, Mohammad
    OPTICS EXPRESS, 2019, 27 (25): : 36164 - 36182
  • [50] Aslamazov Larkin conductivity in layered Dirac/Weyl semimetals
    Shapiro, B. Ya.
    PHYSICA C-SUPERCONDUCTIVITY AND ITS APPLICATIONS, 2022, 602