Nonperturbative topological current in Weyl and Dirac semimetals in laser fields

被引:18
|
作者
Dantas, Renato M. A. [1 ,2 ]
Wang, Zhe [3 ,4 ]
Surowka, Piotr [1 ,2 ,5 ]
Oka, Takashi [1 ,6 ,7 ]
机构
[1] Max Planck Inst Phys Komplexer Syst, Nothnitzer Str 38, D-01187 Dresden, Germany
[2] Wurzburg Dresden Cluster Excellence Ctqmat, D-01187 Dresden, Germany
[3] Univ Cologne, Inst Phys 2, D-50937 Cologne, Germany
[4] Tech Univ Dortmund, Fak Phys, D-44227 Dortmund, Germany
[5] Wroclaw Univ Sci & Technol, Dept Theoret Phys, PL-50370 Wroclaw, Poland
[6] Univ Tokyo, Inst Solid State Phys, Kashiwa, Chiba 2778581, Japan
[7] Max Planck Inst Chem Phys Solids, D-01187 Dresden, Germany
关键词
NEUTRINOS; ABSENCE; LATTICE;
D O I
10.1103/PhysRevB.103.L201105
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We study nonperturbatively the anomalous Hall current and its high harmonics generated in Weyl and Dirac semimetals by strong elliptically polarized laser fields in the context of kinetic theory. We find a crossover between perturbative and nonperturbative regimes characterized by the electric field strength epsilon* = mu omega/2evF (omega, laser frequency; mu, Fermi energy; v(F), Fermi velocity). In the perturbative regime, the anomalous Hall current depends quadratically on the field strength (epsilon), whereas the higher-order corrections, as well as high harmonics, vanish at zero temperature. In the nonperturbative regime, the anomalous Hall current saturates and decays as (ln epsilon)/epsilon, while even-order high harmonics are generated when in-plane rotational symmetry is broken. Based on the analytical solution of the Boltzmann equation, we reveal the topological origin of the sharp crossover: the Weyl monopole stays inside or moves outside of the Fermi sphere, respectively, during its fictitious motion in the perturbative or nonperturbative regimes. Our findings establish a nonlinear response intrinsically connected to topology, characteristic of Weyl and Dirac semimetals.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Weyl semimetals in ultrafast laser fields
    Nematollahi, Fatemeh
    Motlagh, S. Azar Oliaei
    Apalkov, Vadym
    Stockman, Mark, I
    PHYSICAL REVIEW B, 2019, 99 (24)
  • [2] Helical Spin Order from Topological Dirac and Weyl Semimetals
    Sun, Xiao-Qi
    Zhang, Shou-Cheng
    Wang, Zhong
    PHYSICAL REVIEW LETTERS, 2015, 115 (07)
  • [3] Weyl and Dirac semimetals with Z2 topological charge
    Morimoto, Takahiro
    Furusaki, Akira
    PHYSICAL REVIEW B, 2014, 89 (23):
  • [4] Analysis of Dirac and Weyl points in topological semimetals via oscillation effects
    Mikitik, G. P.
    Sharlai, Yu. V.
    LOW TEMPERATURE PHYSICS, 2021, 47 (04) : 312 - 317
  • [5] Analysis of Dirac and Weyl points in topological semimetals via oscillation effects
    Mikitik, G.P.
    Sharlai, Yu.V.
    Fizika Nizkikh Temperatur, 2021, 47 (04): : 342 - 347
  • [6] Topological Materials: Weyl Semimetals
    Yan, Binghai
    Felser, Claudia
    ANNUAL REVIEW OF CONDENSED MATTER PHYSICS, VOL 8, 2017, 8 : 337 - 354
  • [7] Transverse thermopower in Dirac and Weyl semimetals
    Sharma, Girish
    Tewari, Sumanta
    PHYSICAL REVIEW B, 2019, 100 (19)
  • [8] Generation of a Nernst Current from the Conformal Anomaly in Dirac and Weyl Semimetals
    Chernodub, M. N.
    Cortijo, Alberto
    Vozmediano, Maria A. H.
    PHYSICAL REVIEW LETTERS, 2018, 120 (20)
  • [9] Lorentz violation in Dirac and Weyl semimetals
    Kostelecky, V. Alan
    Lehnert, Ralf
    McGinnis, Navin
    Schreck, Marco
    Seradjeh, Babak
    PHYSICAL REVIEW RESEARCH, 2022, 4 (02):
  • [10] Acoustogalvanic Effect in Dirac and Weyl Semimetals
    Sukhachov, P. O.
    Rostami, H.
    PHYSICAL REVIEW LETTERS, 2020, 124 (12)