A cubic kernel for Feedback Vertex Set

被引:0
|
作者
Bodlaender, Hans L. [1 ]
机构
[1] Univ Utrecht, Dept Informat & Comp Sci, Utrecht, Netherlands
来源
Stacs 2007, Proceedings | 2007年 / 4393卷
关键词
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In this paper, it is shown that the FEEDBACK VERTEX SET problem on unweighted, undirected graphs has a kernel of cubic size. Le., a polynomial time algorithm is described, that, when given a graph G and an integer k, finds a graph H and integer k' <= k, such that H has a feedback vertex set with at most k' vertices, if and only if G has a feedback vertex set with at most k vertices, and H has at most O(k(3)) vertices and edges. This improves upon a result by Burrage et al. [8] who gave a kernel for FEEDBACK VERTEX SET of size O(k(11)). One can easily make the algorithm constructive, and transform a minimum size feedback vertex set of H with at most, k' vertices into a minimum size feedback vertex set of G. The kernelization algorithm can be used as a first step of an FPT algorithm for FEEDBACK VERTEX SET, but also as a preprocessing heuristic for the problem.
引用
收藏
页码:320 / 331
页数:12
相关论文
共 50 条
  • [31] Parameterized algorithms for feedback vertex set
    Kanj, I
    Pelsmajer, M
    Schaefer, M
    PARAMETERIZED AND EXACT COMPUTATION, PROCEEDINGS, 2004, 3162 : 235 - 247
  • [32] PARALLELISM AND THE FEEDBACK VERTEX SET PROBLEM
    BOVET, DP
    DEAGOSTINO, S
    PETRESCHI, R
    INFORMATION PROCESSING LETTERS, 1988, 28 (02) : 81 - 85
  • [33] Feedback Vertex Set in Mixed Graphs
    Bonsma, Paul
    Lokshtanov, Daniel
    ALGORITHMS AND DATA STRUCTURES, 2011, 6844 : 122 - +
  • [34] Parameter Ecology for Feedback Vertex Set
    Jansen, Bart M. P.
    Raman, Venkatesh
    Vatshelle, Martin
    TSINGHUA SCIENCE AND TECHNOLOGY, 2014, 19 (04) : 387 - 409
  • [35] Parameter Ecology for Feedback Vertex Set
    Bart M.P.Jansen
    Venkatesh Raman
    Martin Vatshelle
    Tsinghua Science and Technology, 2014, 19 (04) : 387 - 409
  • [36] The price of connectivity for feedback vertex set
    Belmonte, Remy
    van't Hof, Pim
    Kaminski, Marcin
    Paulusma, Daniel
    DISCRETE APPLIED MATHEMATICS, 2017, 217 : 132 - 143
  • [37] Outerplanar obstructions for a feedback vertex set
    Rue, Juanjo
    Stavropoulos, Konstantinos S.
    Thilikos, Dimitrios M.
    EUROPEAN JOURNAL OF COMBINATORICS, 2012, 33 (05) : 948 - 968
  • [38] FEEDBACK VERTEX SET ON COCOMPARABILITY GRAPHS
    COORG, SR
    RANGAN, CP
    NETWORKS, 1995, 26 (02) : 101 - 111
  • [39] Polyhedral aspects of feedback vertex set and pseudoforest deletion set
    Chandrasekaran, Karthekeyan
    Chekuri, Chandra
    Fiorini, Samuel
    Kulkarni, Shubhang
    Weltge, Stefan
    MATHEMATICAL PROGRAMMING, 2025,
  • [40] A new bound on the feedback vertex sets in cubic graphs
    Liu, JP
    Zhao, C
    DISCRETE MATHEMATICS, 1996, 148 (1-3) : 119 - 131