A cubic kernel for Feedback Vertex Set

被引:0
|
作者
Bodlaender, Hans L. [1 ]
机构
[1] Univ Utrecht, Dept Informat & Comp Sci, Utrecht, Netherlands
来源
Stacs 2007, Proceedings | 2007年 / 4393卷
关键词
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In this paper, it is shown that the FEEDBACK VERTEX SET problem on unweighted, undirected graphs has a kernel of cubic size. Le., a polynomial time algorithm is described, that, when given a graph G and an integer k, finds a graph H and integer k' <= k, such that H has a feedback vertex set with at most k' vertices, if and only if G has a feedback vertex set with at most k vertices, and H has at most O(k(3)) vertices and edges. This improves upon a result by Burrage et al. [8] who gave a kernel for FEEDBACK VERTEX SET of size O(k(11)). One can easily make the algorithm constructive, and transform a minimum size feedback vertex set of H with at most, k' vertices into a minimum size feedback vertex set of G. The kernelization algorithm can be used as a first step of an FPT algorithm for FEEDBACK VERTEX SET, but also as a preprocessing heuristic for the problem.
引用
收藏
页码:320 / 331
页数:12
相关论文
共 50 条
  • [1] A Cubic Kernel for Feedback Vertex Set and Loop Cutset
    Hans L. Bodlaender
    Thomas C. van Dijk
    Theory of Computing Systems, 2010, 46 : 566 - 597
  • [2] A Cubic Kernel for Feedback Vertex Set and Loop Cutset
    Bodlaender, Hans L.
    van Dijk, Thomas C.
    THEORY OF COMPUTING SYSTEMS, 2010, 46 (03) : 566 - 597
  • [3] A quadratic kernel for feedback vertex set
    Thomasse, Stephan
    PROCEEDINGS OF THE TWENTIETH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, 2009, : 115 - 119
  • [4] Feedback Vertex Set Inspired Kernel for Chordal Vertex Deletion
    Agrawal, Akanksha
    Lokshtanov, Daniel
    Misra, Pranabendu
    Saurabh, Saket
    Zehavi, Meirav
    PROCEEDINGS OF THE TWENTY-EIGHTH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, 2017, : 1383 - 1398
  • [5] Feedback Vertex Set Inspired Kernel for Chordal Vertex Deletion
    Agrawal, Akanksha
    Lokshtanov, Daniel
    Misra, Pranabendu
    Saurabh, Saket
    Zehavi, Meirav
    ACM TRANSACTIONS ON ALGORITHMS, 2019, 15 (01)
  • [6] A linear kernel for planar feedback vertex set
    Bodlaender, Hans L.
    Penninkx, Eelko
    PARAMETERIZED AND EXACT COMPUTATION, PROCEEDINGS, 2008, 5018 : 160 - 171
  • [7] An Approximate Kernel for Connected Feedback Vertex Set
    Ramanujan, M. S.
    27TH ANNUAL EUROPEAN SYMPOSIUM ON ALGORITHMS (ESA 2019), 2019, 144
  • [8] Towards a Polynomial Kernel for Directed Feedback Vertex Set
    Bergougnoux, Benjamin
    Eiben, Eduard
    Ganian, Robert
    Ordyniak, Sebastian
    Ramanujan, M. S.
    ALGORITHMICA, 2021, 83 (05) : 1201 - 1221
  • [9] A Randomized Polynomial Kernel for Subset Feedback Vertex Set
    Eva-Maria C. Hols
    Stefan Kratsch
    Theory of Computing Systems, 2018, 62 : 63 - 92
  • [10] Towards a Polynomial Kernel for Directed Feedback Vertex Set
    Benjamin Bergougnoux
    Eduard Eiben
    Robert Ganian
    Sebastian Ordyniak
    M. S. Ramanujan
    Algorithmica, 2021, 83 : 1201 - 1221