Brief Announcement: Faster Stencil Computations using Gaussian Approximations

被引:3
|
作者
Ahmad, Zafar [1 ]
Chowdhury, Rezaul [1 ]
Das, Rathish [2 ]
Ganapathi, Pramod [1 ]
Gregory, Aaron [1 ]
Zhu, Yimin [1 ]
机构
[1] SUNY Stony Brook, Stony Brook, NY 11794 USA
[2] Univ Waterloo, Waterloo, ON N2L 3G1, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Linear Stencil; Gaussian Approximation; Fast Gauss Transform; FINITE-DIFFERENCE;
D O I
10.1145/3490148.3538558
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Stencil computations are widely used to simulate the change of state of physical systems. The current best algorithm for performing aperiodic linear stencil computations on a d(>= 1)-dimensional grid of size N for T timesteps does (Theta) over tilde (TN1-1/d + N log N) work. We introduce novel techniques based on random walks and Gaussian approximations for an asymptotic improvement of this work bound for a class of linear stencils. We also improve the span (i.e., parallel running time on an unbounded number of processors) asymptotically from the current state of the art.
引用
收藏
页码:291 / 293
页数:3
相关论文
共 50 条
  • [31] Scalable communication for high-order stencil computations using CUDA-aware MPI
    Pekkila, Johannes
    Vaisala, Miikka S.
    Kapyla, Maarit J.
    Rheinhardt, Matthias
    Lappi, Oskar
    PARALLEL COMPUTING, 2022, 111
  • [32] Brief Announcement: Node Sampling Using Centrifugal Random Walks
    Sevillal, Andres
    Mozo, Alberto
    Fernandez Anta, Antonio
    DISTRIBUTED COMPUTING, DISC 2012, 2012, 7611 : 419 - +
  • [33] Brief Announcement: COP Composition Using Transaction Suspension in the Compiler
    Avni, Hillel
    Suissa-Peleg, Adi
    DISTRIBUTED COMPUTING (DISC 2014), 2014, 8784 : 550 - 552
  • [34] Toward Faster Reinforcement Learning for Robotics: Using Gaussian Processes
    Younes, Ali
    Panov, Aleksandr I.
    ARTIFICIAL INTELLIGENCE, 2019, 11866 : 160 - 174
  • [35] High-Level Programming of Stencil Computations on Multi-GPU Systems Using the SkelCL Library
    Steuwer, Michel
    Haidl, Michael
    Breuer, Stefan
    Gorlatch, Sergei
    PARALLEL PROCESSING LETTERS, 2014, 24 (03)
  • [36] Scalable Bayesian Optimization Using Vecchia Approximations of Gaussian Processes
    Jimenez, Felix
    Katzfuss, Matthias
    INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 206, 2023, 206
  • [37] Brief Announcement: Sublinear-Space Distance Labeling Using Hubs
    Gawrychowski, Pawel
    Kosowski, Adrian
    Uznanski, Przemyslaw
    PROCEEDINGS OF THE 2016 ACM SYMPOSIUM ON PRINCIPLES OF DISTRIBUTED COMPUTING (PODC'16), 2016, : 43 - 45
  • [38] Brief Announcement: Optimal Bit-Reversal Using Vector Permutations
    Lokhmotov, Anton
    Mycroft, Alan
    SPAA'07: PROCEEDINGS OF THE NINETEENTH ANNUAL SYMPOSIUM ON PARALLELISM IN ALGORITHMS AND ARCHITECTURES, 2007, : 198 - 199
  • [39] Toward Faster Reinforcement Learning for Robotics Applications by Using Gaussian Processes
    Younes, A.
    Yushchenko, A. S.
    XLIII ACADEMIC SPACE CONFERENCE, DEDICATED TO THE MEMORY OF ACADEMICIAN S P KOROLEV AND OTHER OUTSTANDING RUSSIAN SCIENTISTS - PIONEERS OF SPACE EXPLORATION, 2019, 2171
  • [40] Energy-efficient Stencil Computations on Distributed GPUs using Dynamic Parallelism and GPU-controlled Communication
    Oden, Lena
    Klenk, Benjamin
    Froening, Holger
    2014 ENERGY EFFICIENT SUPERCOMPUTING WORKSHOP (E2SC), 2014, : 31 - 40