Can we see defects in capacitance measurements of thin-film solar cells?

被引:12
|
作者
Werner, Florian [1 ]
Babbe, Finn [1 ]
Elanzeery, Hossam [1 ]
Siebentritt, Susanne [1 ]
机构
[1] Univ Luxembourg, Phys & Mat Sci Res Unit, 44 Rue Brill, L-4422 Belvaux, Luxembourg
来源
PROGRESS IN PHOTOVOLTAICS | 2019年 / 27卷 / 11期
关键词
admittance spectroscopy; capacitance; deep defects; doping profile; thin films; ADMITTANCE SPECTROSCOPY; CUINSE2; BULK; CDS; DISTRIBUTIONS; INTERFACES; ABSORBERS; TRANSPORT; VOLTAGE; ORIGIN;
D O I
10.1002/pip.3196
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Thermal admittance spectroscopy and capacitance-voltage measurements are well established techniques to study recombination-active deep defect levels and determine the shallow dopant concentration in photovoltaic absorbers. Applied to thin-film solar cells or any device stack consisting of multiple layers, interpretation of these capacitance-based techniques is ambiguous at best. We demonstrate how to assess electrical measurements of thin-film devices and develop a range of criteria that allow to estimate whether deep defects could consistently explain a given capacitance measurement. We show that a broad parameter space, achieved by exploiting bias voltage, time, and illumination as additional experimental parameters in admittance spectroscopy, helps to distinguish between deep defects and capacitive contributions from transport barriers or additional layers in the device stack. On the example of Cu(In,Ga)Se-2 thin-film solar cells, we show that slow trap states are indeed present but cannot be resolved in typical admittance spectra. We explain the common N1 signature by the presence of a capacitive barrier layer and show that the shallow net dopant concentration is not distributed uniformly within the depth of the absorber.
引用
收藏
页码:1045 / 1058
页数:14
相关论文
共 50 条
  • [31] Electrical spectroscopy methods for the characterization of defects in thin-film compound solar cells
    Igalson, M.
    Czudek, A.
    JOURNAL OF APPLIED PHYSICS, 2022, 131 (24)
  • [32] Theory of low temperature capacitance measurements on amorphous silicon thin film solar cells
    Caputo, D
    Palma, F
    PHYSICA SCRIPTA, 1996, 53 (05): : 617 - 625
  • [33] Electron-Beam-Induced Current Measurements of Thin-Film Solar Cells
    Abou-Ras, Daniel
    Kirchartz, Thomas
    ACS APPLIED ENERGY MATERIALS, 2019, 2 (09) : 6127 - 6139
  • [34] Measurements of Raman crystallinity profiles in thin-film microcrystalline silicon solar cells
    Choong, G.
    Vallat-Sauvain, E.
    Multone, X.
    Fesquet, L.
    Kroll, U.
    Meier, J.
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2013, 46 (23)
  • [35] Investigation of Deep-level Defects in CuGaSe2 Thin-film Solar Cells by Transient Photo-capacitance Spectroscopy
    Hu, X. B.
    Weng, G. E.
    Chen, S. Q.
    Akimoto, K.
    33RD INTERNATIONAL CONFERENCE ON THE PHYSICS OF SEMICONDUCTORS, 2017, 864
  • [36] Influence of deep defects on device performance of thin-film polycrystalline silicon solar cells
    Fehr, M.
    Simon, P.
    Sontheimer, T.
    Leendertz, C.
    Gorka, B.
    Schnegg, A.
    Rech, B.
    Lips, K.
    APPLIED PHYSICS LETTERS, 2012, 101 (12)
  • [37] It's aTrap! Fused Quantum Dots Are Undesired Defects in Thin-Film Solar Cells
    Singh, Kamalpreet
    Voznyy, Oleksandr
    CHEM, 2019, 5 (07): : 1692 - 1694
  • [38] Photomemory in CdTe thin-film solar cells
    Voronkov, ÉN
    Sharonov, AE
    Kolobaev, VV
    SEMICONDUCTORS, 1999, 33 (04) : 461 - 462
  • [39] Modeling of multilayer thin-film solar cells
    Brecl, K
    Smole, F
    Furlan, J
    PROGRESS IN PHOTOVOLTAICS, 1999, 7 (06): : 449 - 456
  • [40] Photon Management in Thin-Film Solar Cells
    Rockstuhl, Carsten
    Fahr, Stephan
    Wiesendanger, Samuel
    Lederer, Falk
    FOURTH INTERNATIONAL WORKSHOP ON THEORETICAL AND COMPUTATIONAL NANOPHOTONICS (TACONA-PHOTONICS 2011), 2011, 1398