Small gaps between primes and primes in arithmetic progressions to large moduli

被引:0
|
作者
Zhang, Yitang [1 ]
机构
[1] Univ New Hampshire, Dept Math & Stat, Durham, NH 03824 USA
关键词
Gaps between primes; primes in arithmetic progressions; Bombieri-Vinogradov theorem; Kloostermann sums; NUMBERS;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let p(n) denote the n-th prime. We describe the proof of the recent result lim inf(n -> 8) (p(n+1) - p(n)) < infinity, which is closely related to the distribution of primes in arithmetic progressions to large moduli. A major ingredient of the argument is a stronger version of the Bombieri-Vinogradov theorem which is applicable when the moduli are free from large prime factors.
引用
收藏
页码:557 / 567
页数:11
相关论文
共 50 条
  • [21] Primes in progressions to moduli with a large power factor
    Elliott, P. D. T. A.
    RAMANUJAN JOURNAL, 2007, 13 (1-3): : 241 - 251
  • [22] Primes in progressions to moduli with a large power factor
    P. D. T. A. Elliott
    The Ramanujan Journal, 2007, 13 : 241 - 251
  • [23] On products of primes and almost primes in arithmetic progressions
    Zhao, Lilu
    ACTA ARITHMETICA, 2022, 204 (03) : 253 - 267
  • [24] On products of primes and almost primes in arithmetic progressions
    Shparlinski, Igor E.
    PERIODICA MATHEMATICA HUNGARICA, 2013, 67 (01) : 55 - 61
  • [25] On products of primes and almost primes in arithmetic progressions
    Igor E. Shparlinski
    Periodica Mathematica Hungarica, 2013, 67 : 55 - 61
  • [26] Product of three primes in large arithmetic progressions
    Balasubramanian, Ramachandran
    Ramare, Olivier
    Srivastav, Priyamvad
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2023, 19 (04) : 843 - 857
  • [27] Large prime gaps and progressions with few primes
    Ford, Kevin
    RIVISTA DI MATEMATICA DELLA UNIVERSITA DI PARMA, 2021, 12 (01): : 41 - 47
  • [28] Products of primes in arithmetic progressions
    Matomaki, Kaisa
    Teravainen, Joni
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2024, 2024 (808): : 193 - 240
  • [29] Product of primes in arithmetic progressions
    Ramare, Olivier
    Srivastav, Priyamvad
    Serra, Oriol
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2020, 16 (04) : 747 - 766
  • [30] Primes in short arithmetic progressions
    Puchta, JC
    ACTA ARITHMETICA, 2003, 106 (02) : 143 - 149