A new eighth-order iterative method for solving nonlinear equations

被引:22
|
作者
Thukral, R. [1 ]
机构
[1] Pade Res Ctr, Leeds LS17 5JS, W Yorkshire, England
关键词
Newton method; Newton-type methods; Nonlinear equations; Order of convergence;
D O I
10.1016/j.amc.2010.05.048
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we present an improvement of the fourth-order Newton-type method for solving a nonlinear equation. The new Newton-type method is shown to converge of the order eight. Per iteration the new method requires three evaluations of the function and one evaluation of its first derivative and therefore the new method has the efficiency index of (4)root 8, which is better than the well known Newton-type methods of lower order. We shall examine the effectiveness of the new eighth-order Newton-type method by approximating the simple root of a given nonlinear equation. Numerical comparisons are made with several other existing methods to show the performance of the presented method. (C) 2010 Elsevier Inc. All rights reserved.
引用
收藏
页码:222 / 229
页数:8
相关论文
共 50 条
  • [41] Optimal eighth-order iterative methods for approximating multiple zeros of nonlinear functions
    Zafar, Fiza
    Cordero, Alicia
    Junjua, Moin-Ud-Din
    Torregrosa, Juan R.
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2020, 114 (02)
  • [42] An Optimal Family of Eighth-Order Iterative Methods with an Inverse Interpolatory Rational Function Error Corrector for Nonlinear Equations
    Kim, Young I.
    Behl, Ramandeep
    Motsa, Sandile S.
    MATHEMATICAL MODELLING AND ANALYSIS, 2017, 22 (03) : 321 - 336
  • [43] An optimal scheme for multiple roots of nonlinear equations with eighth-order convergence
    Ramandeep Behl
    Ali Saleh Alshomrani
    S. S. Motsa
    Journal of Mathematical Chemistry, 2018, 56 : 2069 - 2084
  • [44] Variational Iteration Method for Solving Eighth-Order Boundary Value Problems
    Torvattanabun, M.
    Koonprasert, S.
    THAI JOURNAL OF MATHEMATICS, 2010, 8 (04): : 121 - 129
  • [45] New modification of Maheshwari's method with optimal eighth order convergence for solving nonlinear equations
    Sharifi, Somayeh
    Ferrara, Massimiliano
    Salimi, Mehdi
    Siegmund, Stefan
    OPEN MATHEMATICS, 2016, 14 : 443 - 451
  • [46] Optimal eighth-order iterative methods for approximating multiple zeros of nonlinear functions
    Fiza Zafar
    Alicia Cordero
    Moin-Ud-Din Junjua
    Juan R. Torregrosa
    Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2020, 114
  • [47] A Fifth-Order Iterative Method for Solving Nonlinear Equations
    Rafiullah, M.
    NUMERICAL ANALYSIS AND APPLICATIONS, 2011, 4 (03) : 239 - 243
  • [48] A fifth-order iterative method for solving nonlinear equations
    Ham, YoonMee
    Chun, Changbum
    APPLIED MATHEMATICS AND COMPUTATION, 2007, 194 (01) : 287 - 290
  • [49] Sixteenth-Order Iterative Method for Solving Nonlinear Equations
    Comemuang, Chalermwut
    Janngam, Pairat
    INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE, 2022, 17 (03): : 1039 - 1049
  • [50] On new iterative method for solving systems of nonlinear equations
    Fadi Awawdeh
    Numerical Algorithms, 2010, 54 : 395 - 409