Direction-of-Arrival Estimation With Time-Varying Arrays via Bayesian Multitask Learning

被引:12
|
作者
Liu, Zhang-Meng [1 ]
机构
[1] Natl Univ Def Technol, Coll Elect Sci & Engn, Changsha 410073, Hunan, Peoples R China
基金
美国国家科学基金会;
关键词
Direction-of-arrival (DOA) estimation; joint sparse reconstruction; multitask learning; time-varying arrays; SPARSE SIGNAL RECONSTRUCTION; MOBILE COMMUNICATIONS; ANTENNA-ARRAYS; PERSPECTIVE; ALGORITHM;
D O I
10.1109/TVT.2014.2309658
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper proposes a Bayesian method to address the farfield narrowband direction-of-arrival (DOA) estimation problem with time-varying arrays, whose elements relatively move in an arbitrary but known way. The measurements associated with different array geometries are formulated with distinct and spatially overcomplete observation systems, and a joint Bayesian model is established to combine those measurements and yield unified DOA estimates. The joint reconstruction process of the multiple measurements falls into the multitask learning category; thus, the proposed method is named DOA estimation via multitask learning (DEML). Theoretical results focusing on the uniqueness of the solution and the global convergence of the Bayesian learning process are also given, which indicate the maximal separable signal number and the global convergence of the proposed method in the considered array processing scenarios. Numerical examples are also provided to demonstrate the DOA estimation performance of the proposed method and support the theoretical results.
引用
收藏
页码:3762 / 3773
页数:12
相关论文
共 50 条
  • [41] A Direction-of-Arrival Estimation Method via Joint Diagonalization
    Xian-Feng Xu
    Chen-Dong Duan
    Lai-Jun Liu
    Xiao-Jun Yang
    Wireless Personal Communications, 2017, 96 : 6037 - 6046
  • [42] DIRECTION-OF-ARRIVAL ESTIMATION VIA EXTENDED PHASE INTERFEROMETRY
    WU, YW
    RHODES, S
    SATORIUS, EH
    IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, 1995, 31 (01) : 375 - 381
  • [43] Coherent SVR Learning for Wideband Direction-of-Arrival Estimation
    Wu, Liu-Li
    Huang, Zhi-Tao
    IEEE SIGNAL PROCESSING LETTERS, 2019, 26 (04) : 642 - 646
  • [44] Wideband Direction-of-Arrival Estimation Based on Deep Learning
    Liya Xu
    Yi Ma
    Jinfeng Zhang
    Bin Liao
    Journal of Beijing Institute of Technology, 2021, 30 (04) : 412 - 424
  • [45] DIRECTION FINDING WITH TIME-VARYING ARRAYS
    ZEIRA, A
    FRIEDLANDER, B
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1995, 43 (04) : 927 - 937
  • [46] Off-grid direction-of-arrival estimation for nested arrays via uncertainty set extraction
    Chen, Zhen
    Fan, Chongyi
    Du, Huagui
    Huang, Xiaotao
    ELECTRONICS LETTERS, 2021, 57 (12) : 489 - 492
  • [47] Underwater Localization via Wideband Direction-of-Arrival Estimation Using Acoustic Arrays of Arbitrary Shape
    Dubrovinskaya, Elizaveta
    Kebkal, Veronika
    Kebkal, Oleksiy
    Kebkal, Konstantin
    Casari, Paolo
    SENSORS, 2020, 20 (14) : 1 - 20
  • [48] Interpolation-Based Direction-of-Arrival Estimation for Coprime Arrays via Covariance Matrix Fitting
    Chen, Zhen
    Fan, Chongyi
    Huang, Xiaotao
    IEEE ACCESS, 2020, 8 : 149133 - 149141
  • [49] Direction-of-Arrival Estimation for CS-MIMO Radar Using Subspace Sparse Bayesian Learning
    Yang Bin
    Huang Dongmei
    Li Ding
    INTELLIGENT INFORMATION PROCESSING VIII, 2016, 486 : 31 - 38
  • [50] Improved sparse Bayesian learning method for direction-of-arrival estimation in non-uniforni noise
    Yang, Peng
    Liu, Zheng
    Jiang, Wen-Li
    JOURNAL OF ELECTROMAGNETIC WAVES AND APPLICATIONS, 2014, 28 (05) : 563 - 573