Minimum-error state discrimination constrained by the no-signaling principle

被引:15
|
作者
Hwang, Won-Young [1 ]
Bae, Joonwoo [2 ]
机构
[1] Chonnam Natl Univ, Dept Phys Educ, Kwangju 500757, South Korea
[2] Korea Inst Adv Study, Sch Computat Sci, Seoul 130012, South Korea
关键词
QUANTUM DETECTION;
D O I
10.1063/1.3298647
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We provide a bound on the minimum error when discriminating among quantum states, using the no-signaling principle. The bound is general in that it depends on neither dimensions nor specific structures of given quantum states to be discriminated among. We show that the bound is tight for the minimum-error state discrimination between symmetric (both pure and mixed) qubit states. Moreover, the bound can be applied to a set of quantum states for which the minimum-error state discrimination is not known yet. Finally, our results strengthen the quantitative connection between two no-go theorems, the no-signaling principle, and the no perfect state estimation. (C) 2010 American Institute of Physics. [doi: 10.1063/1.3298647]
引用
收藏
页数:11
相关论文
共 50 条
  • [41] A minimum-error, energy-constrained neural code is an instantaneous-rate code
    Johnson, Erik C.
    Jones, Douglas L.
    Ratnam, Rama
    JOURNAL OF COMPUTATIONAL NEUROSCIENCE, 2016, 40 (02) : 193 - 206
  • [42] Minimum-error discrimination among three pure linearly independent symmetric qutrit states
    Khiavi, Y. Mazhari
    Kourbolagh, Y. Akbari
    QUANTUM INFORMATION PROCESSING, 2013, 12 (02) : 1255 - 1260
  • [43] Minimum-error discrimination between two sets of similarity-transformed quantum states
    Jafarizadeh, M. A.
    Khiavi, Y. Mazhari
    Kourbolagh, Y. Akbari
    QUANTUM INFORMATION PROCESSING, 2013, 12 (07) : 2385 - 2404
  • [44] Minimum-error classes for matching parts
    Weber, Thomas A.
    OPERATIONS RESEARCH LETTERS, 2021, 49 (01) : 106 - 112
  • [45] Minimum-error discrimination among three pure linearly independent symmetric qutrit states
    Y. Mazhari Khiavi
    Y. Akbari Kourbolagh
    Quantum Information Processing, 2013, 12 : 1255 - 1260
  • [46] A minimum-error, energy-constrained neural code is an instantaneous-rate code
    Erik C. Johnson
    Douglas L. Jones
    Rama Ratnam
    Journal of Computational Neuroscience, 2016, 40 : 193 - 206
  • [47] Minimum-Error Triangulations for Sea Surface Reconstruction
    Arutyunova, Anna
    Driemel, Anne
    Haunert, Jan-Henrik
    Haverkort, Herman
    Kusche, Jürgen
    Langetepe, Elmar
    Mayer, Philip
    Mutzel, Petra
    Röglin, Heiko
    Leibniz International Proceedings in Informatics, LIPIcs, 2022, 224
  • [48] MINIMUM-ERROR TRIANGULATIONS FOR SEA SURFACE RECONSTRUCTION
    Arutyunova, Anna
    Driemel, Anne
    Haunert, Jan-Henrik
    Haverkort, Herman
    Kusche, Juergen
    Langetepe, Elmar
    Mayer, Philip
    Mutzel, Petra
    Roeglin, Heiko
    JOURNAL OF COMPUTATIONAL GEOMETRY, 2023, 14 (02) : 108 - 171
  • [49] APL PROGRAM FOR MINIMUM-ERROR GUTTMAN SCALING
    DEAN, DJH
    SEGALL, MH
    BEHAVIOR RESEARCH METHODS & INSTRUMENTATION, 1978, 10 (03): : 421 - 425
  • [50] Complete analysis to minimum-error discrimination of four mixed qubit states with arbitrary prior probabilities
    Ha, Donghoon
    Kwon, Younghun
    QUANTUM INFORMATION PROCESSING, 2023, 22 (01)