Characterization of a Dehydratase and Methyltransferase in the Biosynthesis of Ribosomally Synthesized and Post-translationally Modified Peptides in Lachnospiraceae

被引:19
|
作者
Huo, Liujie [1 ,2 ,3 ]
Zhao, Xiling [1 ,2 ]
Acedo, Jeella Z. [1 ,2 ]
Estrada, Paola [4 ]
Nair, Satish K. [4 ]
van der Donk, Wilfred A. [1 ,2 ,4 ]
机构
[1] Univ Illinois, Dept Chem, 600 South Mathews Ave, Urbana, IL 61801 USA
[2] Univ Illinois, Howard Hughes Med Inst, 600 South Mathews Ave, Urbana, IL 61801 USA
[3] Shandong Univ, Inst Microbial Technol, SKLMT, Helmholtz Int Lab Antiinfect, Qingdao 266237, Shandong, Peoples R China
[4] Univ Illinois, Dept Biochem, 600 South Mathews Ave, Urbana, IL 61801 USA
基金
美国国家卫生研究院; 加拿大自然科学与工程研究理事会;
关键词
dehydration; lanthipeptides; methyltransferases; PTMs; RiPPs; IN-VITRO; HETEROLOGOUS EXPRESSION; ESCHERICHIA-COLI; ENTEROCOCCAL CYTOLYSIN; MINING REVEALS; GENE CLUSTERS; LANTIBIOTICS; LACTICIN-481; DIVERSITY; LANTHIPEPTIDES;
D O I
10.1002/cbic.201900483
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
As a result of the exponential increase in genomic data, discovery of novel ribosomally synthesized and post-translationally modified peptide natural products (RiPPs) has progressed rapidly in the past decade. The lanthipeptides are a major subset of RiPPs. Through genome mining we identified a novel lanthipeptide biosynthetic gene cluster (lah) from Lachnospiraceae bacterium C6A11, an anaerobic bacterium that is a member of the human microbiota and which is implicated in the development of host disease states such as type 2 diabetes and resistance to Clostridium difficile colonization. The lah cluster encodes at least seven putative precursor peptides and multiple post-translational modification (PTM) enzymes. Two unusual class II lanthipeptide synthetases LahM1/M2 and a substrate-tolerant S-adenosyl-l-methionine (SAM)-dependent methyltransferase LahS(B) are biochemically characterized in this study. We also present the crystal structure of LahS(B) in complex with product S-adenosylhomocysteine. This study sets the stage for further exploration of the final products of the lah pathway as well as their potential physiological functions in human/animal gut microbiota.
引用
收藏
页码:190 / 199
页数:10
相关论文
共 50 条
  • [21] Recent Advances in Discovery, Bioengineering, and Bioactivity-Evaluation of Ribosomally Synthesized and Post-translationally Modified Peptides
    Zhong, Guannan
    Wang, Zong-Jie
    Yan, Fu
    Zhang, Youming
    Huo, Liujie
    ACS BIO & MED CHEM AU, 2022, 3 (01): : 1 - 31
  • [22] Radical SAM Enzymes and Ribosomally-Synthesized and Post-translationally Modified Peptides: A Growing Importance in the Microbiomes
    Benjdia, Alhosna
    Berteau, Olivier
    FRONTIERS IN CHEMISTRY, 2021, 9
  • [23] Major gene-regulatory mechanisms operating in ribosomally synthesized and post-translationally modified peptide (RiPP) biosynthesis
    Bartholomae, Maike
    Buivydas, Andrius
    Viel, Jakob H.
    Montalban-Lopez, Manuel
    Kuipers, Oscar P.
    MOLECULAR MICROBIOLOGY, 2017, 106 (02) : 186 - 206
  • [24] Synthesis of Ribosomally Synthesized and Post-Translationally Modified Peptides Containing C-C Cross-Links
    Laws III, David
    Plouch, Eleda V.
    Blakey, Simon B.
    JOURNAL OF NATURAL PRODUCTS, 2022, 85 (10): : 2519 - 2539
  • [25] Anticancer Ribosomally Synthesized and Post-Translationally Modified Peptides from Plants: Structures, Therapeutic Potential, and Future Directions
    Hwang, Hyeon-Jeong
    Nam, Youngsang
    Jang, Chanhee
    Kim, Eun La
    Jang, Eun Seo
    Lee, Yeo Jin
    Lee, Seoung Rak
    CURRENT ISSUES IN MOLECULAR BIOLOGY, 2025, 47 (01)
  • [26] Mechanism of Action of Ribosomally Synthesized and Post- Translationally Modified Peptides
    Ongpipattanakul, Chayanid
    Desormeaux, Emily K.
    DiCaprio, Adam
    van der Donk, Wilfred A.
    Mitchell, Douglas A.
    Nair, Satish K.
    CHEMICAL REVIEWS, 2022, : 14722 - 14814
  • [27] Discovery and engineering of ribosomally synthesized and post-translationally modified peptide (RiPP) natural products
    Li, He
    Ding, Wei
    Zhang, Qi
    RSC CHEMICAL BIOLOGY, 2024, 5 (02): : 90 - 108
  • [28] Ribosomally synthesized and post-translationally modified peptide natural product discovery in the genomic era
    Hetrick, Kenton J.
    van der Donk, Wilfred A.
    CURRENT OPINION IN CHEMICAL BIOLOGY, 2017, 38 : 36 - 44
  • [29] Ribosomally synthesized and post-translationally modified peptide natural products: overview and recommendations for a universal nomenclature
    Arnison, Paul G.
    Bibb, Mervyn J.
    Bierbaum, Gabriele
    Bowers, Albert A.
    Bugni, Tim S.
    Bulaj, Grzegorz
    Camarero, Julio A.
    Campopiano, Dominic J.
    Challis, Gregory L.
    Clardy, Jon
    Cotter, Paul D.
    Craik, David J.
    Dawson, Michael
    Dittmann, Elke
    Donadio, Stefano
    Dorrestein, Pieter C.
    Entian, Karl-Dieter
    Fischbach, Michael A.
    Garavelli, John S.
    Goeransson, Ulf
    Gruber, Christian W.
    Haft, Daniel H.
    Hemscheidt, Thomas K.
    Hertweck, Christian
    Hill, Colin
    Horswill, Alexander R.
    Jaspars, Marcel
    Kelly, Wendy L.
    Klinman, Judith P.
    Kuipers, Oscar P.
    Link, A. James
    Liu, Wen
    Marahiel, Mohamed A.
    Mitchell, Douglas A.
    Moll, Gert N.
    Moore, Bradley S.
    Mueller, Rolf
    Nair, Satish K.
    Nes, Ingolf F.
    Norris, Gillian E.
    Olivera, Baldomero M.
    Onaka, Hiroyasu
    Patchett, Mark L.
    Piel, Joern
    Reaney, Martin J. T.
    Rebuffat, Sylvie
    Ross, R. Paul
    Sahl, Hans-Georg
    Schmidt, Eric W.
    Selsted, Michael E.
    NATURAL PRODUCT REPORTS, 2013, 30 (01) : 108 - 160
  • [30] Engineering of new-to-nature ribosomally synthesized and post-translationally modified peptide natural products
    Wu, Chunyu
    van der Donk, Wilfred A.
    CURRENT OPINION IN BIOTECHNOLOGY, 2021, 69 : 221 - 231