Towards Efficient and Privacy-preserving Federated Deep Learning

被引:0
|
作者
Hao, Meng [1 ,2 ]
Li, Hongwei [1 ,3 ]
Xu, Guowen [1 ,2 ]
Liu, Sen [1 ]
Yang, Haomiao [1 ]
机构
[1] Univ Elect Sci & Technol China, Sch Comp Sci & Engn, Hefei, Anhui, Peoples R China
[2] CETC Big Data Res Inst Co Ltd, Guiyang 550022, Guizhou, Peoples R China
[3] Sci & Technol Commun Secur Lab, Chengdu 610041, Sichuan, Peoples R China
基金
国家重点研发计划;
关键词
Federated Deep Learning; Stochastic Gradient Descent; Privacy-preserving; Differential Privacy; Additively Homomorphic Encryption; CLOUD; AUTHENTICATION; CHALLENGES; NETWORKS; SCHEME;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Deep learning has been applied in many areas, such as computer vision, natural language processing and emotion analysis. Differing from the traditional deep learning that collects users' data centrally, federated deep learning requires participants to train the networks on private datasets and share the training results, and hence has more gratifying efficiency and stronger security. However, it still presents some privacy issues since adversaries can deduce users' privacy from local outputs, such as gradients. While the problem of private federated deep learning has been an active research issue, the latest research findings are still inadequate in terms of security, accuracy and efficiency. In this paper, we propose an efficient and privacy-preserving federated deep learning protocol based on stochastic gradient descent method by integrating the additively homomorphic encryption with differential privacy. Specifically, users add noises to each local gradients before encrypting them to obtain the optical performance and security. Moreover, our scheme is secure to honest-but-curious server setting even if the cloud server colludes with multiple users. Besides, our scheme supports federated learning for large-scale users scenarios and extensive experiments demonstrate our scheme has high efficiency and high accuracy compared with non-private model.
引用
收藏
页数:6
相关论文
共 50 条
  • [21] Efficient Verifiable Protocol for Privacy-Preserving Aggregation in Federated Learning
    Eltaras, Tamer
    Sabry, Farida
    Labda, Wadha
    Alzoubi, Khawla
    Malluhi, Qutaibah
    [J]. IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, 2023, 18 : 2977 - 2990
  • [22] Communication-Efficient Personalized Federated Learning With Privacy-Preserving
    Wang, Qian
    Chen, Siguang
    Wu, Meng
    [J]. IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, 2024, 21 (02): : 2374 - 2388
  • [23] Privacy-Preserving Efficient Federated-Learning Model Debugging
    Li, Anran
    Zhang, Lan
    Wang, Junhao
    Han, Feng
    Li, Xiang-Yang
    [J]. IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, 2022, 33 (10) : 2291 - 2303
  • [24] ESVFL: Efficient and secure verifiable federated learning with privacy-preserving
    Cai, Jiewang
    Shen, Wenting
    Qin, Jing
    [J]. Information Fusion, 2024, 109
  • [25] Efficient and Privacy-Preserving Federated Learning Against Poisoning Adversaries
    Zhao, Jiaqi
    Zhu, Hui
    Wang, Fengwei
    Zheng, Yandong
    Lu, Rongxing
    Li, Hui
    [J]. IEEE Transactions on Services Computing, 2024, 17 (05): : 2320 - 2333
  • [26] PEPFL:A framework for a practical and efficient privacy-preserving federated learning
    Yange Chen
    Baocang Wang
    Hang Jiang
    Pu Duan
    Yuan Ping
    Zhiyong Hong
    [J]. Digital Communications and Networks, 2024, 10 (02) - 368
  • [27] Adaptive privacy-preserving federated learning
    Liu, Xiaoyuan
    Li, Hongwei
    Xu, Guowen
    Lu, Rongxing
    He, Miao
    [J]. PEER-TO-PEER NETWORKING AND APPLICATIONS, 2020, 13 (06) : 2356 - 2366
  • [28] Frameworks for Privacy-Preserving Federated Learning
    Phong, Le Trieu
    Phuong, Tran Thi
    Wang, Lihua
    Ozawa, Seiichi
    [J]. IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2024, E107D (01) : 2 - 12
  • [29] Privacy-Preserving Personalized Federated Learning
    Hu, Rui
    Guo, Yuanxiong
    Li, Hongning
    Pei, Qingqi
    Gong, Yanmin
    [J]. ICC 2020 - 2020 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS (ICC), 2020,
  • [30] Privacy-preserving Techniques in Federated Learning
    Liu, Yi-Xuan
    Chen, Hong
    Liu, Yu-Han
    Li, Cui-Ping
    [J]. Ruan Jian Xue Bao/Journal of Software, 2022, 33 (03): : 1057 - 1092