Distributed optimisation of a portfolio's Omega

被引:9
|
作者
Gilli, Manfred [1 ]
Schumann, Enrico [1 ]
机构
[1] Univ Geneva, Dept Econometr, CH-1211 Geneva 4, Switzerland
关键词
Optimisation heuristics; Threshold Accepting; Portfolio optimisation; Distributed computing;
D O I
10.1016/j.parco.2009.10.001
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We investigate portfolio selection with an alternative objective function in a distributed computing environment. More specifically, we optimise a portfolio's 'Omega' which is the ratio of two partial moments of the portfolio's return distribution. Since finding optimal portfolios under such a performance measure and realistic constraints is a non-convex problem, we suggest to solve the problem with a heuristic method called Threshold Accepting (TA). TA is a very flexible technique as it requires no simplifications of the problem and allows for a straightforward implementation of all kinds of constraints. Applying the algorithm to actual data, we find that TA is well-capable of solving this type of problem. Furthermore, we show that the computations can easily be distributed which leads to considerable speedups. (C) 2009 Elsevier B.V. All rights reserved.
引用
收藏
页码:381 / 389
页数:9
相关论文
共 50 条
  • [31] An omega portfolio model with dynamic return thresholds
    Yu, Jing-Rung
    Chiou, Wan-Jiun Paul
    Lee, Wen-Yi
    [J]. INTERNATIONAL TRANSACTIONS IN OPERATIONAL RESEARCH, 2023, 30 (05) : 2528 - 2545
  • [32] Portfolio optimisation with transaction costs and exponential utility
    Korn, R
    Laue, S
    [J]. STOCHASTIC PROCESSES AND RELATED TOPICS, 2002, 12 : 171 - 188
  • [33] An historical analysis and optimisation of money market portfolio
    Mlynarovic, V
    Kolárik, R
    [J]. EKONOMICKY CASOPIS, 2003, 51 (04): : 422 - 446
  • [34] Simplified mean-variance portfolio optimisation
    Claudio Fontana
    Martin Schweizer
    [J]. Mathematics and Financial Economics, 2012, 6 : 125 - 152
  • [35] Portfolio optimisation using alternative risk measures
    Lorimer, Douglas Austen
    van Schalkwyk, Cornelis Hendrik
    Szczygielski, Jan Jakub
    [J]. FINANCE RESEARCH LETTERS, 2024, 67
  • [36] Robust Portfolio Optimisation Under Sparse Contamination
    Autiero, Carlo E.
    Farcomeni, Alessio
    [J]. COMPUTATIONAL ECONOMICS, 2024,
  • [37] Simplified mean-variance portfolio optimisation
    Fontana, Claudio
    Schweizer, Martin
    [J]. MATHEMATICS AND FINANCIAL ECONOMICS, 2012, 6 (02) : 125 - 152
  • [38] Quantum walk-based portfolio optimisation
    Slate, N.
    Matwiejew, E.
    Marsh, S.
    Wang, J. B.
    [J]. QUANTUM, 2021, 5
  • [39] A uniformly distributed random portfolio
    Kim, Woo Chang
    Lee, Yongjae
    [J]. QUANTITATIVE FINANCE, 2016, 16 (02) : 297 - 307
  • [40] QUANTISATION EFFECTS IN DISTRIBUTED OPTIMISATION
    Jonkman, Joseph A. G.
    Sherson, Thomas
    Heusdens, Richard
    [J]. 2018 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2018, : 3649 - 3653