Large-scale randomized-coordinate descent methods with non-separable linear constraints

被引:0
|
作者
Reddi, Sashank J. [1 ]
Hefny, Ahmed [1 ]
Downey, Carlton [1 ]
Dubey, Avinava [1 ]
Sra, Suvrit [2 ]
机构
[1] Carnegie Mellon Univ, Machine Learning Dept, Pittsburgh, PA 15213 USA
[2] MIT, Cambridge, MA 02139 USA
关键词
CONVERGENCE;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We develop randomized block coordinate descent (CD) methods for linearly constrained convex optimization. Unlike other large-scale CD methods, we do not assume the constraints to be separable, but allow them be coupled linearly. To our knowledge, ours is the first CD method that allows linear coupling constraints, without making the global iteration complexity have an exponential dependence on the number of constraints. We present algorithms and theoretical analysis for four key (convex) scenarios: (i) smooth; (ii) smooth + separable nonsmooth; (iii) asynchronous parallel; and (iv) stochastic. We discuss some architectural details of our methods and present preliminary results to illustrate the behavior of our algorithms.
引用
收藏
页码:762 / 771
页数:10
相关论文
共 50 条
  • [21] Active fault diagnosis for stochastic large scale systems under non-separable costs
    Straka, Ondrej
    Puncochar, Ivo
    AUTOMATICA, 2024, 159
  • [22] Approximation schemes for non-separable non-linear boolean programming problems under nested knapsack constraints
    Halman, Nir
    Kellerer, Hans
    Strusevich, Vitaly A.
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2018, 270 (02) : 435 - 447
  • [23] Stochastic Gradient Descent for Large-scale Linear Nonparallel SVM
    Tang, Jingjing
    Tian, Yingjie
    Wu, Guoqiang
    Li, Dewei
    2017 IEEE/WIC/ACM INTERNATIONAL CONFERENCE ON WEB INTELLIGENCE (WI 2017), 2017, : 980 - 983
  • [24] Efficient random coordinate descent algorithms for large-scale structured nonconvex optimization
    Patrascu, Andrei
    Necoara, Ion
    JOURNAL OF GLOBAL OPTIMIZATION, 2015, 61 (01) : 19 - 46
  • [25] Stochastic Parallel Block Coordinate Descent for Large-Scale Saddle Point Problems
    Zhu, Zhanxing
    Storkey, Amos J.
    THIRTIETH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2016, : 2429 - 2435
  • [26] Efficient random coordinate descent algorithms for large-scale structured nonconvex optimization
    Andrei Patrascu
    Ion Necoara
    Journal of Global Optimization, 2015, 61 : 19 - 46
  • [27] Cooperative Co-evolution with Delta Grouping for Large Scale Non-separable Function Optimization
    Omidvar, Mohammad Nabi
    Li, Xiaodong
    Yao, Xin
    2010 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2010,
  • [28] FPGA Design of a Coordinate Descent Data Detector for Large-Scale MU-MIMO
    Wu, Michael
    Dick, Chris
    Cavallaro, Joseph R.
    Studer, Christoph
    2016 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS (ISCAS), 2016, : 1894 - 1897
  • [29] Efficient Detection for Large-Scale MIMO Systems Using Dichotomous Coordinate Descent Iterations
    Quan, Zhi
    Lv, Shuhua
    Jiang, Li
    IEICE TRANSACTIONS ON COMMUNICATIONS, 2020, E103B (11) : 1310 - 1317
  • [30] A Block-Coordinate Descent Approach for Large-scale Sparse Inverse Covariance Estimation
    Treister, Eran
    Turek, Javier
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 27 (NIPS 2014), 2014, 27