Fractal Stochastic Processes on Thin Cantor-Like Sets

被引:21
|
作者
Golmankhaneh, Alireza Khalili [1 ]
Sibatov, Renat Timergalievich [2 ,3 ]
机构
[1] Islamic Azad Univ, Urmia Branch, Dept Phys, Orumiyeh 5716963896, Iran
[2] Ulyanovsk State Univ, Lab Diffus Proc, Ulyanovsk 432017, Russia
[3] Moscow Inst Phys & Technol, Dept Theoret Phys, Dolgoprudnyi 141701, Russia
基金
俄罗斯科学基金会;
关键词
fractal calculus; fractional Brownian motion; fractal derivative; fractal stochastic process; Brownian motion; FRACTIONAL CALCULUS; ANOMALOUS DIFFUSION; BROWNIAN-MOTION; REAL LINE; TIME; TRANSPORT; EQUATIONS; SUBSETS; POISSON;
D O I
10.3390/math9060613
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We review the basics of fractal calculus, define fractal Fourier transformation on thin Cantor-like sets and introduce fractal versions of Brownian motion and fractional Brownian motion. Fractional Brownian motion on thin Cantor-like sets is defined with the use of non-local fractal derivatives. The fractal Hurst exponent is suggested, and its relation with the order of non-local fractal derivatives is established. We relate the Gangal fractal derivative defined on a one-dimensional stochastic fractal to the fractional derivative after an averaging procedure over the ensemble of random realizations. That means the fractal derivative is the progenitor of the fractional derivative, which arises if we deal with a certain stochastic fractal.
引用
收藏
页数:13
相关论文
共 50 条
  • [41] Plasmon polaritons in 1D Cantor-like fractal photonic superlattices containing a left-handed material
    Mejia-Salazar, J. R.
    Porras-Montenegro, N.
    Reyes-Gomez, E.
    Cavalcanti, S. B.
    Oliveira, L. E.
    [J]. EPL, 2011, 95 (02)
  • [42] Diffraction from fractal grating Cantor sets
    Golmankhaneh, Alireza K.
    Baleanu, D.
    [J]. JOURNAL OF MODERN OPTICS, 2016, 63 (14) : 1364 - 1369
  • [43] Scaling laws of reflection coefficients of quantum waves at a Cantor-like potential
    Sakaguchi, Hidetsugu
    Ogawana, Taichi
    [J]. PHYSICAL REVIEW E, 2017, 95 (03)
  • [44] Self-similar conductance patterns in graphene Cantor-like structures
    H. García-Cervantes
    L. M. Gaggero-Sager
    D. S. Díaz-Guerrero
    O. Sotolongo-Costa
    I. Rodríguez-Vargas
    [J]. Scientific Reports, 7
  • [45] Self-similar conductance patterns in graphene Cantor-like structures
    Garcia-Cervantes, H.
    Gaggero-Sager, L. M.
    Diaz-Guerrero, D. S.
    Sotolongo-Costa, O.
    Rodriguez-Vargas, I.
    [J]. SCIENTIFIC REPORTS, 2017, 7
  • [46] The Cantor-like patterns in rat hippocampal CA1 pyramidal neurons
    Fukushima, Yasuhiro
    Tsukada, Minoru
    Tsuda, Ichiro
    Kuroda, Shigeru
    Yamaguti, Yutaka
    [J]. NEUROSCIENCE RESEARCH, 2006, 55 : S63 - S63
  • [47] Giant Second-Harmonic Generation in Cantor-like Metamaterial Photonic Superlattices
    Reyes Gomez, Faustino
    Porras-Montenegro, Nelson
    Oliveira, Osvaldo N., Jr.
    Ricardo Mejia-Salazar, J.
    [J]. ACS OMEGA, 2018, 3 (12): : 17922 - 17927
  • [48] Thin sets with fat shadows: Projections of Cantor sets
    Mendivil, F.
    Taylor, T. D.
    [J]. AMERICAN MATHEMATICAL MONTHLY, 2008, 115 (05): : 451 - 456
  • [49] Thermodynamics of fractal spectra:: Cantor sets and quasiperiodic sequences
    Carpena, P
    Coronado, AV
    Bernaola-Galván, P
    [J]. PHYSICAL REVIEW E, 2000, 61 (03): : 2281 - 2289
  • [50] Random Variables and Stable Distributions on Fractal Cantor Sets
    Golmankhaneh, Alireza Khalili
    Fernandez, Arran
    [J]. FRACTAL AND FRACTIONAL, 2019, 3 (02) : 1 - 13